【題目】已知直角三角形的兩條直角邊分別為12cm16cm,則這個(gè)直角三角形內(nèi)切圓的半徑是( 。

A. 2cm B. 3cm C. 4cm D. 5cm

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表一和圖一:

(1)請(qǐng)將表一和圖一中的空缺部分補(bǔ)充完整.

(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),請(qǐng)計(jì)算每人的得票數(shù).

(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7分鐘同時(shí)到達(dá)C點(diǎn),乙機(jī)器人始終以60米/分的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(米)與他們的行走時(shí)間x(分鐘)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:

(1)A、B兩點(diǎn)之間的距離是 米,甲機(jī)器人前2分鐘的速度為 米/分;

(2)若前3分鐘甲機(jī)器人的速度不變,求線段EF所在直線的函數(shù)解析式;

(3)若線段FG∥x軸,則此段時(shí)間,甲機(jī)器人的速度為 米/分;

(4)求A、C兩點(diǎn)之間的距離;

(5)直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( 。

A. 任何非負(fù)數(shù)都有兩個(gè)平方根 B. 一個(gè)正數(shù)的平方根仍然是正數(shù)

C. 只有正數(shù)才有平方根 D. 負(fù)數(shù)沒有平方根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圖形G的投影矩形定義如下:矩形的兩組對(duì)邊分別平行于x軸,y軸,圖形G的頂點(diǎn)在矩形的邊上或內(nèi)部,且矩形的面積最小.設(shè)矩形的較長(zhǎng)的邊與較短的邊的比為k,我們稱常數(shù)k為圖形G的投影比.如圖1,矩形ABCD為△DEF的投影矩形,其投影比

(1)如圖2,若點(diǎn)A(1,3),B(3,5),則△OAB投影比k的值為  

(2)已知點(diǎn)C(4,0),在函數(shù)y=2x﹣4(其中x<2)的圖象上有一點(diǎn)D,若△OCD的投影比k=2,求點(diǎn)D的坐標(biāo).

(3)已知點(diǎn)E(3,2),在直線y=x+1上有一點(diǎn)F(5,a)和一動(dòng)點(diǎn)P,若△PEF的投影比1<k<2,則點(diǎn)P的橫坐標(biāo)m的取值范圍  (直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算2-3的結(jié)果是(

A. 1 B. 5 C. -1 D. -5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿矩形的邊由運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )

A. 10 B. 16 C. 18 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,BD為⊙O的直徑,BD與AC相交于點(diǎn)H,AC的延長(zhǎng)線與過點(diǎn)B的直線相交于點(diǎn)E,且∠A=∠EBC.

(1)求證:BE是⊙O的切線;

(2)已知CG∥EB,且CG與BD、BA分別相交于點(diǎn)F、G,若BGBA=48,F(xiàn)G=,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=5(x+3)2-2的頂點(diǎn)坐標(biāo)是( )

A. (-3,-2) B. (3,-2) C. (3,2) D. (-3,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案