【題目】某校倡議八年級(jí)學(xué)生利用雙休日在各自社區(qū)參加義務(wù)勞動(dòng),為了解同學(xué)們勞動(dòng)情況,學(xué)校隨機(jī)抽查了部分學(xué)生的勞動(dòng)時(shí)間,并用得到的數(shù)據(jù)繪制成不完整的統(tǒng)計(jì)圖表,如圖所示:

勞動(dòng)時(shí)間(時(shí))

頻數(shù)(人數(shù))

頻率

0.5

12

0.12

1

30

0.3

1.5

x

0.5

2

8

y

合計(jì)

m

1

(1)統(tǒng)計(jì)表中的m=   ,x=   ,y=   

(2)被抽樣調(diào)查的同學(xué)勞動(dòng)時(shí)間的眾數(shù)是   ,中位數(shù)是   ;

(3)請(qǐng)將條形圖補(bǔ)充完整;

(4)求所有被調(diào)查同學(xué)的平均勞動(dòng)時(shí)間.

【答案】(1)100,50,0.08;(2)1.5,1.5; (3)見解析;(4)1.27.

【解析】

(1)首先根據(jù)勞動(dòng)時(shí)間是0.5小時(shí)的有12人,頻率是0.12即可求得總數(shù),然后根據(jù)頻率的計(jì)算公式求得x、y的值;
(2)根據(jù)中位數(shù)的定義,即大小處于中間位置的數(shù)即可作出判斷;
(3)根據(jù)(1)的結(jié)果即可完成;
(4)利用加權(quán)平均數(shù)公式即可求解.

(1)調(diào)查的總?cè)藬?shù)是m=12÷0.12=100(),

x=100×0.5=50(),

y==0.08;

(2)被調(diào)查同學(xué)勞動(dòng)時(shí)間的眾數(shù)為1.5小時(shí);中位數(shù)是1.5小時(shí);

(3)

;

(4)所有被調(diào)查同學(xué)的平均勞動(dòng)時(shí)間是:=1.27(小時(shí)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某市電視臺(tái)記者為了解市民獲取新聞的主要圖徑,通過抽樣調(diào)查繪制的一個(gè)條形統(tǒng)計(jì)圖.若該市約有230萬人,則可估計(jì)其中將報(bào)紙和手機(jī)上網(wǎng)作為獲取新聞的主要途徑的總?cè)藬?shù)大約為萬人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】6分)下面是小馬虎解的一道題

題目:在同一平面上,若BOA=70°BOC=15°AOC的度數(shù).

解:根據(jù)題意可畫出圖,

∵∠AOC=∠BOABOC

=70°15°

=55°,

∴∠AOC=55°

若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),說明理由.若不會(huì),請(qǐng)將小馬虎的的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對(duì)稱軸為直線x= 的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,﹣4).
(1)求拋物線解析式及頂點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第一象限,四邊形OEAF是以O(shè)A為對(duì)角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式;
(3)當(dāng)(2)中的平行四邊形OEAF的面積為24時(shí),請(qǐng)判斷平行四邊形OEAF是否為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩地相距900km,一列快車從甲地開往乙地,一列慢車從乙地開往甲地,兩車同時(shí)出發(fā),行了4小時(shí)后兩車相遇,快車的速度是慢車速度的2倍.

(1)請(qǐng)求出慢車與快車的速度?

(2)兩車出發(fā)后多長時(shí)間,它們相距225千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(8,0)、(0,2 ),C是AB的中點(diǎn),過點(diǎn)C作y軸的垂線,垂足為D,動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),過點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線第一次垂直時(shí),點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的長方形紙片,O為原點(diǎn),點(diǎn)Ax軸的正半軸上,點(diǎn)Cy軸的正半軸上,OA=10 ,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E.

(1)求CEOD的長;

(2)求直線DE的表達(dá)式;

(3)直線y=kx+bDE平行,當(dāng)它與矩形OABC有公共點(diǎn)時(shí),直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(閱讀材料)“九宮圖”源于我國古代夏禹時(shí)期的“洛書”1所示,是世界上最早的矩陣,又稱“幻方”,用今天的數(shù)學(xué)符號(hào)翻譯出來,“洛書”就是一個(gè)三階“幻方”2所示

(規(guī)律總結(jié))觀察圖1、圖2,根據(jù)“九宮圖”中各數(shù)字之間的關(guān)系,我們可以總結(jié)出“幻方”需要滿足的條件是______;若圖3,是一個(gè)“幻方”,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣ x2+bx+4與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,若已知B點(diǎn)的坐標(biāo)為B(8,0)

(1)求拋物線的解析式及其對(duì)稱軸.
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由.
(3)M為拋物線上BC之間的一點(diǎn),N為線段BC上的一點(diǎn),若MN∥y軸,求MN的最大值;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案