【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD.將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED.若BC=10,BD=9,求△AED的周長(zhǎng).
【答案】證明:∵△ABC是等邊三角形,
∴AC=AB=BC=10,
∵△BAE△BCD逆時(shí)針旋旋轉(zhuǎn)60°得出,
∴AE=CD,BD=BE,∠EBD=60°,
∴AE+AD=AD+CD=AC=10,
∵∠EBD=60°,BE=BD,
∴△BDE是等邊三角形,
∴DE=BD=9,
∴△AED的周長(zhǎng)=AE+AD+DE=AC+BD=19.
故答案為:19.
【解析】 本題考查的是圖形旋轉(zhuǎn)的性質(zhì)及等邊三角形的判定與性質(zhì),熟知旋轉(zhuǎn)前、后的圖形全等是解答此題的關(guān)鍵.
【考點(diǎn)精析】利用圖形的旋轉(zhuǎn)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動(dòng)了相同的角度,任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.旋轉(zhuǎn)的方向、角度、旋轉(zhuǎn)中心是它的三要素.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如上圖,反比例函數(shù)的圖象位于第一、三象限,其中第一象限內(nèi)的圖象經(jīng)過點(diǎn)A(1,2),請(qǐng)?jiān)诘谌笙迌?nèi)的圖象上找一個(gè)你喜歡的點(diǎn)P,你選擇的P點(diǎn)坐標(biāo)為 .
【答案】(-1,-2)(答案不唯一).
【解析】試題分析:根據(jù)“第一象限內(nèi)的圖象經(jīng)過點(diǎn)A(1,2)”先求出函數(shù)解析式,給x一個(gè)值負(fù)數(shù),求出y值即可得到坐標(biāo).
試題解析:∵圖象經(jīng)過點(diǎn)A(1,2),
∴
解得k=2,
∴函數(shù)解析式為y=,
當(dāng)x=-1時(shí),y==-2,
∴P點(diǎn)坐標(biāo)為(-1,-2)(答案不唯一).
考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.
【題型】填空題
【結(jié)束】
13
【題目】在y軸右側(cè)且平行于y軸的直線l被反比例函數(shù)()與函數(shù)()所截,當(dāng)直線l向右平移4個(gè)單位時(shí),直線l被兩函數(shù)圖象所截得的線段掃過的面積為__________平方單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特點(diǎn),作出與四邊形ABCD關(guān)于原點(diǎn)對(duì)稱的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點(diǎn).O是△ABC所在平面上的動(dòng)點(diǎn),連接OB、OC,點(diǎn)G、F分別是OB、OC的中點(diǎn),順次連接點(diǎn)D、G、F、E.
(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時(shí),求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察圖①,由點(diǎn)A和點(diǎn)B可確定 條直線;
觀察圖②,由不在同一直線上的三點(diǎn)A、B和C最多能確定 條直線;
(1)動(dòng)手畫一畫圖③中經(jīng)過A、B、C、D四點(diǎn)的所有直線,最多共可作 條直線;
(2)在同一平面內(nèi)任三點(diǎn)不在同一直線的五個(gè)點(diǎn)最多能確定 條直線、n個(gè)點(diǎn)(n≥2)最多能確定 條直線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(南陽唐河縣期中)如圖,在ABCD中,DE平分∠ADC交AB于G,交CB的延長(zhǎng)線于E,BF平分∠ABC交AD的延長(zhǎng)線于F.
(1)若AD=5,AB=8,求GB的長(zhǎng);
(2)求證:∠E=∠F.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)O,若OE=OF,DF∥BE.
(1)求證:△BOE≌△DOF;
(2)求證:四邊形DEBF是平行四邊形;
(3)若OD=OE=OF,則四邊形DEBF是什么特殊的四邊形,請(qǐng)證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩直線L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,則有k1k2=﹣1.
(1)應(yīng)用:已知y=2x+1與y=kx﹣1垂直,求k;
(2)直線經(jīng)過A(2,3),且與y=x+3垂直,求解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是AB為直徑的半圓周上一點(diǎn),點(diǎn)C在∠PAB的平分線上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,則PE的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com