(2011•寧夏)已知⊙O1、⊙O2的半徑分別是r1=3、r2=5.若兩圓相切,則圓心距O1O2的值是(  )
A.2或4B.6或8
C.2或8D.4或6
C
∵⊙O1、⊙O2的半徑分別是r1=3、r2=5.
∴若兩圓內(nèi)切,則圓心距O1O2的值是:5﹣3=2,
若兩圓外切,則圓心距O1O2的值是:3+5=8.
∴圓心距O1O2的值是:2或8.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,扇形的半徑為6,圓心角為120°,用這個(gè)扇形圍成一個(gè)圓錐的側(cè)面,
所得圓錐的底面半徑為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知直線AB是⊙O的切線,A為切點(diǎn),OB交⊙O于點(diǎn)C,點(diǎn)D在⊙O上,且∠OBA=40°,則∠ADC=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•攀枝花)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,BD⊥AC于點(diǎn)D,OM⊥AB于點(diǎn)M,OM=,則sin∠CBD的值等于(  )

A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•陜西)如圖,在△ABC中,∠B=60°,⊙O是△ABC外接圓,過點(diǎn)A作⊙O的切線,交CO的延長(zhǎng)線于P點(diǎn),CP交⊙O于D
(1)求證:AP=AC;
(2)若AC=3,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•常德)已知△ABC,分別以AC和BC為直徑作半圓O1,O2,P是AB的中點(diǎn),
(1)如圖1,若△ABC是等腰三角形,且AC=BC,在,上分別取點(diǎn)E、F,使∠AO1E=∠BO2F,則有結(jié)論①△PO1E≌△FO2P,②四邊形PO1CO2是菱形,請(qǐng)給出結(jié)論②的證明;
(2)如圖2,若(1)中△ABC是任意三角形,其他條件不變,則(1)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)給出證明;
(3)如圖3,若PC是⊙O1的切線,求證:AB2=BC2+3AC2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

(2011山東濟(jì)南,21,3分)如圖,△ABC為等邊三角形,AB=6,動(dòng)點(diǎn)O在△ABC的邊上從點(diǎn)A出發(fā)沿著A→C→B→A的路線勻速運(yùn)動(dòng)一周,速度為1個(gè)長(zhǎng)度單位每秒,以O(shè)為圓心、為半徑的圓在運(yùn)動(dòng)過程中與△ABC的邊第二次相切時(shí)是出發(fā)后第  秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•恩施州)如圖,已知AB為⊙O的直徑,BD為⊙O的切線,過點(diǎn)B的弦BC⊥OD交⊙O于點(diǎn)C,垂足為M.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=6cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,Rt△ABC兩直角邊的邊長(zhǎng)為AC=1,BC=2.
(1)如圖2,⊙O與Rt△ABC的邊AB相切于點(diǎn)X,與邊CB相切于點(diǎn)Y.請(qǐng)你在圖2中作出并標(biāo)明⊙O的圓心O;(用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)P是這個(gè)Rt△ABC上和其內(nèi)部的動(dòng)點(diǎn),以P為圓心的⊙P與Rt△ABC的兩條邊相切.設(shè)⊙P的面積為s,你認(rèn)為能否確定s的最大值?若能,請(qǐng)你求出s的最大值;若不能,請(qǐng)你說明不能確定s的最大值的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案