【題目】列方程求解
(1)m為何值時(shí),關(guān)于x的一元一次方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.
(2)已知|a﹣3|+(b+1)2=0,代數(shù)式的值比b﹣a+m多1,求m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x-3)(x-2)-p2=0.
(1)求證:無論p取何值時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1、x2,且滿足x12+x22=3 x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一粒木質(zhì)中國象棋棋子“車”,它的正面雕刻一個(gè)“車”字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的兩面不均勻,為了估計(jì)“車”字朝上的機(jī)會(huì),某實(shí)驗(yàn)小組做了棋子下拋實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)整理如下:
實(shí)驗(yàn)次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的頻數(shù) | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相應(yīng)的頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)請將表中數(shù)據(jù)補(bǔ)充完整,并畫出折線統(tǒng)計(jì)圖中剩余部分.
(2)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),這個(gè)實(shí)驗(yàn)的頻率將接近于該事件發(fā)生的機(jī)會(huì),請估計(jì)這個(gè)機(jī)會(huì)約是多少?
(3)在(2)的基礎(chǔ)上,進(jìn)一步估計(jì):將該“車”字棋子,按照實(shí)驗(yàn)要求連續(xù)拋2次,則剛好使“車”字一次字面朝上,一次朝下的可能性為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】a、b為有理數(shù),現(xiàn)在規(guī)定一種新的運(yùn)算“⊕”,如a⊕b=﹣ab+a2﹣1,則(2⊕3)⊕(﹣3)=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中錯(cuò)誤的是( )
A. 相反數(shù)是本身的數(shù)是0B. 倒數(shù)是本身的數(shù)是﹣1和1
C. 絕對值最小的數(shù)是0D. 任何有理數(shù)都有倒數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生了解環(huán)保知識,增強(qiáng)環(huán)保意識,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有850名學(xué)生參加了這次競賽,為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請你根據(jù)尚未完成并有局部污染的頻率分布表和頻率分布直方圖,解答下列問題:
分 組 | 頻數(shù) | 頻率 |
50.5~60.5 | 4 | 0.08 |
60.5~70.5 | 0.16 | |
70.5~80.5 | 10 | |
80.5~90.5 | 16 | 0.32 |
90.5~100.5 | ||
合 計(jì) | 50 | 1.00 |
(1)填充頻率分布表的空格;
(2)補(bǔ)全頻數(shù)直方圖,并在此圖上直接繪制頻數(shù)分布折線圖;
(3)全體參賽學(xué)生中,競賽成績落在哪組范圍內(nèi)的人數(shù)最多?
(4)若成績在90分以上(不含90分)為優(yōu)秀,則該校成績優(yōu)秀的約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(y+3)(y-2)=y2+my+n,則m、n的值分別為( )
A. m=5,n=6 B. m=1,n=-6 C. m=1,n=6 D. m=5,n=-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+ax+b=0(b≠0)與x2+cx+d=0都有實(shí)數(shù)根,若這兩個(gè)方程有且只有一個(gè)公共根,且ab=cd,則稱它們互為“同根輪換方程”.如x2-x-6=0與x2-2x-3=0互為“同根輪換方程”.
(1)若關(guān)于x的方程x2+4x+m=0與x2-6x+n=0互為“同根輪換方程”,求m的值;
(2)已知方程①:x2+ax+b=0和方程②:x2+2ax+b=0,p、q分別是方程①和方程②的實(shí)數(shù)根,且p≠q,b≠0.試問方程①和方程②是否能互為“同根輪換方程”?如果能,用含a的代數(shù)式分別表示p和q;如果不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com