【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉2019次得到正方形OA2019B2019C2019,如果點A的坐標為(1,0),那么點B2019的坐標為(  )

A. 1,1B. C. D. (﹣1,1

【答案】C

【解析】

根據(jù)圖形可知:點B在以O為圓心,以OB為半徑的圓上運動,由旋轉可知:將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,相當于將線段OB繞點O逆時針旋轉45°,可得對應點B的坐標,根據(jù)規(guī)律發(fā)現(xiàn)是8次一循環(huán),由此即可求解.

∵四邊形OABC是正方形,且OA1,

B(1,1)

連接OB,

由勾股定理得:OB

由旋轉得:OBOB1OB2OB3=…=,

∵將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1

相當于將線段OB繞點O逆時針旋轉45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,

B1(0,)B2(1,1),B3(,0),…,

發(fā)現(xiàn)是8次一循環(huán),所以2019÷8252…余3,

∴點B2019的坐標為(,0)

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,工人師傅用一塊長為10分米,寬為6分米的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形;(厚度不計)

1)當長方體底面面積為12平方分米時,裁掉的正方形邊長為______分米;

2)若要求制作的長方體的底面長不大于底面寬的5倍,且將容器的外表面進行防銹處理,其側面處理費用為0.5/平方分米,底面處理費用為2/平方分米;求:裁掉的正方形邊長為多大時,防銹處理總費用最低,最低為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若要在寬AD20米的城南大道兩邊安裝路燈,路燈的燈臂BC2米,且與燈柱AB120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應該設計為多少米(結果保留根號)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,于點

1)如圖1,點,分別在上,且,當時,求線段的長;

2)如圖2,點,分別在上,且,求證:;

3)如圖3,點的延長線上,點上,且,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了手機伴我健康行主題活動,他們隨機抽取部分學生進行使用手機目的每周使用手機的時間的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知查資料的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:

(1)在扇形統(tǒng)計圖中,玩游戲對應的百分比為______,圓心角度數(shù)是______度;

(2)補全條形統(tǒng)計圖;

(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60.

(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;

(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線與直線都經(jīng)過兩點,該拋物線的頂點為C

1)求此拋物線和直線的解析式;

2)設直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過Mx軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標;若不存在,請說明理由;

3)設點P是直線下方拋物線上的一動點,當面積最大時,求點P的坐標,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).

1)將△ABC沿軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;

2)將△ABC繞著點O順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個發(fā)電廠,每焚燒一噸垃圾,發(fā)電廠比發(fā)電廠多發(fā)40度電,焚燒20噸垃圾比焚燒30噸垃圾少1800度電.

1)求焚燒1噸垃圾,各發(fā)多少度電?

2兩個發(fā)電廠共焚燒90噸垃圾,焚燒的垃圾不多于焚燒的垃圾的兩倍,求廠和廠總發(fā)電量的最大值.

查看答案和解析>>

同步練習冊答案