【題目】如圖,在平面直角坐標系中,將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,依此方式,繞點O連續(xù)旋轉2019次得到正方形OA2019B2019C2019,如果點A的坐標為(1,0),那么點B2019的坐標為( )
A. (1,1)B. C. D. (﹣1,1)
【答案】C
【解析】
根據(jù)圖形可知:點B在以O為圓心,以OB為半徑的圓上運動,由旋轉可知:將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,相當于將線段OB繞點O逆時針旋轉45°,可得對應點B的坐標,根據(jù)規(guī)律發(fā)現(xiàn)是8次一循環(huán),由此即可求解.
∵四邊形OABC是正方形,且OA=1,
∴B(1,1),
連接OB,
由勾股定理得:OB=,
由旋轉得:OB=OB1=OB2=OB3=…=,
∵將正方形OABC繞點O逆時針旋轉45°后得到正方形OA1B1C1,
相當于將線段OB繞點O逆時針旋轉45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,
∴B1(0,),B2(﹣1,1),B3(﹣,0),…,
發(fā)現(xiàn)是8次一循環(huán),所以2019÷8=252…余3,
∴點B2019的坐標為(﹣,0)
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,工人師傅用一塊長為10分米,寬為6分米的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形;(厚度不計)
(1)當長方體底面面積為12平方分米時,裁掉的正方形邊長為______分米;
(2)若要求制作的長方體的底面長不大于底面寬的5倍,且將容器的外表面進行防銹處理,其側面處理費用為0.5元/平方分米,底面處理費用為2元/平方分米;求:裁掉的正方形邊長為多大時,防銹處理總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好,此時,路燈的燈柱AB高應該設計為多少米(結果保留根號)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,于點.
(1)如圖1,點,分別在,上,且,當,時,求線段的長;
(2)如圖2,點,分別在,上,且,求證:;
(3)如圖3,點在的延長線上,點在上,且,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從 2018 年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的 統(tǒng)計圖,已知“查資料”的人數(shù)是 40人.請你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計圖中,“玩游戲”對應的百分比為______,圓心角度數(shù)是______度;
(2)補全條形統(tǒng)計圖;
(3)該校共有學生2100人,估計每周使用手機時間在2 小時以上(不含2小時)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店老板準備購買A、B兩種型號的足球共100只,已知A型號足球進價每只40元,B型號足球進價每只60元.
(1)若該店老板共花費了5200元,那么A、B型號足球各進了多少只;
(2)若B型號足球數(shù)量不少于A型號足球數(shù)量的,那么進多少只A型號足球,可以讓該老板所用的進貨款最少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與直線都經(jīng)過、兩點,該拋物線的頂點為C.
(1)求此拋物線和直線的解析式;
(2)設直線與該拋物線的對稱軸交于點E,在射線上是否存在一點M,過M作x軸的垂線交拋物線于點N,使點M、N、C、E是平行四邊形的四個頂點?若存在,求點M的坐標;若不存在,請說明理由;
(3)設點P是直線下方拋物線上的一動點,當面積最大時,求點P的坐標,并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點O順時針旋轉90°,畫出旋轉后得到的△AB2C2,并直接寫出點B2 、C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩個發(fā)電廠,每焚燒一噸垃圾,發(fā)電廠比發(fā)電廠多發(fā)40度電,焚燒20噸垃圾比焚燒30噸垃圾少1800度電.
(1)求焚燒1噸垃圾,和各發(fā)多少度電?
(2)兩個發(fā)電廠共焚燒90噸垃圾,焚燒的垃圾不多于焚燒的垃圾的兩倍,求廠和廠總發(fā)電量的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com