【題目】20165月某日,重慶部分區(qū)縣的最高溫度如下表所示:

地區(qū)

合川

永川

江津

涪陵

豐都

梁平

云陽

黔江

溫度(℃

25

26

29

26

24

28

28

29

則這組數(shù)據(jù)的中位數(shù)是__________

【答案】27℃

【解析】根據(jù)中位數(shù)的求解方法,先排列順序,再求解.

將這組數(shù)據(jù)按從小到大的順序排列:24,25,26,26,28,28,28,29,

此組數(shù)據(jù)的個(gè)數(shù)是偶數(shù)個(gè),所以這組數(shù)據(jù)的中位數(shù)是(26+28)÷2=27,

故答案為:27

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A是直線yx上一動(dòng)點(diǎn),將點(diǎn)A向右平移1個(gè)單位得到點(diǎn)B,點(diǎn)C(1,0),則

OBCB的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于a的方程2(a+2)=a+4的解也是關(guān)于x的方程2(x﹣3)﹣b=7的解.

(1)求a、b的值;

(2)若線段AB=a,在直線AB上取一點(diǎn)P,恰好使=b,點(diǎn)QPB的中點(diǎn),請(qǐng)畫出圖形并求出線段AQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ AOB90°,且點(diǎn)A,B分別在反比例函數(shù)x0),x0)的圖象上,且k1,k2分別是方程x2x60的兩根.

1)求k1,k2的值;

2)連接AB,求tan OBA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)二次函數(shù)y3x12+2圖象的結(jié)論,不正確的是( 。

A.圖象是拋物線,且開口向上

B.圖象的對(duì)稱軸為直線 x1

C.圖象的最低點(diǎn)坐標(biāo)為(12

D.圖象與x軸有兩個(gè)交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C1:y=x2向右平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度得到拋物線C2 , 則拋物線C2對(duì)應(yīng)的函數(shù)解析式是(
A.y=(x﹣2)2﹣3
B.y=(x+2)2﹣3
C.y=(x﹣2)2+3
D.y=(x+2)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且a、b滿足|a+3|+b﹣22=0

1)求AB兩點(diǎn)的對(duì)應(yīng)的數(shù)a、b

2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x+1=x8的解.

①求線段BC的長(zhǎng);

②在數(shù)軸上是否存在點(diǎn)P,使PA+PB=BC?求出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點(diǎn),與軸交于點(diǎn)(點(diǎn)與點(diǎn)不重合),拋物線經(jīng)過點(diǎn),拋物線的頂點(diǎn)為

(1) °;

(2)求的值;

(3)在拋物線上是否存在點(diǎn),能夠使?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,∠ADC的平分線交直線BC于點(diǎn)E、交AB的延長(zhǎng)線于點(diǎn)F,連接AC.

(1)如圖1,若∠ADC=90°,G是EF的中點(diǎn),連接AG、CG.

①求證:BE=BF;

②請(qǐng)判斷△AGC的形狀,并說明理由.

(2)如圖2,若∠ADC=60°,將線段FB繞點(diǎn)F順時(shí)針旋轉(zhuǎn)60°至FG,連接AG、CG,判斷△AGC的形狀.(直接寫出結(jié)論不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案