【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:

①CE=CF;

線段EF的最小值為

當(dāng)AD=2時(shí),EF與半圓相切;

若點(diǎn)F恰好落在B C上,則AD=

當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是

其中正確結(jié)論的序號(hào)是

【答案】①③⑤

【解析】試題分析:連接CD,如圖1所示,點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,∴CE=CD∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°∴∠E+∠F=90°,∠CDE+∠CDF=90°∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,結(jié)論“CE=CF”正確;

當(dāng)CDAB時(shí),如圖2所示,AB是半圓的直徑,∴∠ACB=90°,AB=8CBA=30°,∴∠CAB=60°AC=4,BC=CDABCBA=30°,CD=BC=.根據(jù)點(diǎn)到直線之間,垂線段最短可得:點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),CD的最小值為CE=CD=CF,EF=2CD線段EF的最小值為結(jié)論線段EF的最小值為錯(cuò)誤;

當(dāng)AD=2時(shí),連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°∵AO=4,AD=2∴DO=2,∴AD=DO∴∠ACD=∠OCD=30°,點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,∴∠ECA=∠DCA∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF∴EF與半圓相切,結(jié)論“EF與半圓相切正確;

當(dāng)點(diǎn)F恰好落在上時(shí),連接FB、AF,如圖4所示,點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,EDAC,∴∠AGD=90°∴∠AGD=ACB,EDBC∴△FHC∽△FDE,FHFD=FCFE,FC=EF,FH=FDFH=DH,DEBC,∴∠FHC=FDE=90°,BF=BD∴∠FBH=DBH=30°,∴∠FBD=60°,AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,FB=AB=4,DB=4,AD=AB﹣DB=4,結(jié)論“AD=錯(cuò)誤;

⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對(duì)稱,點(diǎn)D與點(diǎn)F關(guān)于BC對(duì)稱,當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),點(diǎn)E的運(yùn)動(dòng)路徑AMAB關(guān)于AC對(duì)稱,點(diǎn)F的運(yùn)動(dòng)路徑NBAB關(guān)于BC對(duì)稱,EF掃過的圖形就是圖5中陰影部分,S陰影=2SABC=2×ACBC=ACBC=4×=,EF掃過的面積為,結(jié)論“EF掃過的面積為正確.

故答案為:①③⑤

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=20,

(1)寫出數(shù)軸上點(diǎn)B表示的數(shù)   

(2)|5﹣3|表示53之差的絕對(duì)值,實(shí)際上也可理解為53兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點(diǎn)與表示有理數(shù)3的點(diǎn)之間的距離.試探索:

①:若|x﹣8|=2,則x=   

:|x+12|+|x﹣8|的最小值為   

(3)動(dòng)點(diǎn)PO點(diǎn)出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.求當(dāng)t為多少秒時(shí)?A,P兩點(diǎn)之間的距離為2;

(4)動(dòng)點(diǎn)P,Q分別從O,B兩點(diǎn),同時(shí)出發(fā),點(diǎn)P以每秒5個(gè)單位長度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),Q點(diǎn)以P點(diǎn)速度的兩倍,沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問當(dāng)t為多少秒時(shí)?P,Q之間的距離為4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO.沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.

1)求出OC的長?

2)點(diǎn)EF是直線BC上的兩點(diǎn),若是以EF為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);

3)取AB的中點(diǎn)M,若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、MP、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出所有滿足條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年,隨州學(xué)子尤東梅參加《最強(qiáng)大腦》節(jié)目,成功完成了高難度的項(xiàng)目挑戰(zhàn),展現(xiàn)了驚人的記憶力.在2019年的《最強(qiáng)大腦》節(jié)目中,也有很多具有挑戰(zhàn)性的比賽項(xiàng)目,其中《幻圓》這個(gè)項(xiàng)目充分體現(xiàn)了數(shù)學(xué)的魅力.如圖是一個(gè)最簡(jiǎn)單的二階幻圓的模型,要求:①內(nèi)、外兩個(gè)圓周上的四個(gè)數(shù)字之和相等;②外圓兩直徑上的四個(gè)數(shù)字之和相等,則圖中兩空白圓圈內(nèi)應(yīng)填寫的數(shù)字從左到右依次為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新華文具用品店最近購進(jìn)了一批鋼筆,進(jìn)價(jià)為每支6元,為了合理定價(jià),在銷售前4天試行機(jī)動(dòng)價(jià)格,賣出時(shí)每支以10元為標(biāo)準(zhǔn),超過10元的部分記為正,不足10元的部分記為負(fù)。文具店記錄了這四天該鋼筆的售價(jià)情況和售出情況,如下表所示:

1

2

3

4

每支價(jià)格相對(duì)標(biāo)準(zhǔn)價(jià)格()

+1

0

-1

-2

售出支數(shù)()

12

15

32

33

(1)填空:這四天中賺錢最多的是第______天,這天賺了______元錢;

(2)求新華文具用品店這四天出售這種鋼筆一共賺了多少錢;

(3)新華文具用品店準(zhǔn)備用這四天賺的錢全部購進(jìn)這種鋼筆,進(jìn)價(jià)仍為每支6元為了促銷這種鋼筆,每只鋼筆的售價(jià)在10元的基礎(chǔ)上打九折,本次購進(jìn)的這種鋼筆全部售出后共賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的兩條直角邊長分別為6、8,分別以它的三邊為直徑向上作三個(gè)半圓,求圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在線段AB上有一點(diǎn)C(點(diǎn)C不與AB重合且ACBC),分別以AC、BC為邊作正方形ACED和正方形BCFG,其中點(diǎn)F在邊CE上,連接AG

1)如圖1,若AC=7,BC=5,則AG=______;

2)如圖2,若點(diǎn)C是線段AB的三等分點(diǎn),連接AE、EG,求證:△AEG是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)為原點(diǎn),點(diǎn)表示的數(shù)為,點(diǎn)表示的數(shù)為,且滿足

1兩點(diǎn)對(duì)應(yīng)的數(shù)分別為____________;

2)若將數(shù)軸折疊,使得A點(diǎn)與B點(diǎn)重合,則原點(diǎn)O與數(shù)______表示的點(diǎn)重合;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1) ; 2.

【答案】1x1 =1 x2=; (2) x1 =-1x2= .

【解析】試題分析:

根據(jù)兩方程的特點(diǎn),使用“因式分解法”解兩方程即可.

試題解析

1)原方程可化為:

方程左邊分解因式得 ,

,

解得 .

2)原方程可化為: ,即

,

解得 .

型】解答
結(jié)束】
20

【題目】已知x1,x2是關(guān)于x的一元二次方程x22(m1)xm250的兩實(shí)根.

(1)(x11)(x21)28,求m的值;

(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個(gè)三角形的周長.

查看答案和解析>>

同步練習(xí)冊(cè)答案