【題目】如圖,數(shù)陣是由50個偶數(shù)排成的.
(1)在數(shù)陣中任意做一類似于圖中的框,設(shè)其中最小的數(shù)為x,那么其他3個數(shù)怎樣表示?
(2)如果這四個數(shù)的和是172,能否求出這四個數(shù)?
(3)如果擴充數(shù)陣的數(shù)據(jù),框中的四個數(shù)的和可以是2019嗎?為什么?
【答案】(1)設(shè)其中最小的數(shù)為x,則另外三個數(shù)分別為x+2,x+12,x+14.(2)這四個數(shù)分別為36,38,48,50.(3)不可以,理由見解析.
【解析】
(1)設(shè)其中最小的數(shù)為x,觀察數(shù)陣可得出另外三個數(shù)分別為;
(2)由(1)的結(jié)論結(jié)合四個數(shù)之和為172,即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論;
(3)由(1)的結(jié)論結(jié)合四個數(shù)之和為2019,即可得出關(guān)于的一元一次方程,解之即可得出的值,由該值不為偶數(shù),即可得出框中的四個數(shù)的和不可以是2019.
(1)設(shè)其中最小的數(shù)為x,則另外三個數(shù)分別為x+2,x+12,x+14.
(2)依題意,得:x+x+2+x+12+x+14=172,
解得:x=36,
∴x+2=38,x+12=48,x+14=50.
答:這四個數(shù)分別為36,38,48,50.
(3)不可以,理由如下:
依題意,得:x+x+2+x+12+x+14=2019,
解得:x=497.
∵x為偶數(shù),
∴不符合題意,即框中的四個數(shù)的和不可以是2019.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個一個順次相加顯然太麻煩,我們仔細(xì)分析這100個連續(xù)自然數(shù)的規(guī)律和特點,可以發(fā)現(xiàn)運用加法的運算律,是可以大大簡化計算,提高計算速度的.因為1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果:
1+2+3+4+5+…+100
=(1+100)+(2+99)+(3+98)+…+(50+51)
=101× = .
(1)補全例題解題過程;
(2)請猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n= .
(3)試計算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校260名學(xué)生參加植樹活動,要求每人植4~7棵,活動結(jié)束后隨機抽查了若干名學(xué)生每人的植樹量,并分為四種類型, A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),請回答下列問題:
(1)在這次調(diào)查中D類型有多少名學(xué)生?
(2)寫出被調(diào)查學(xué)生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調(diào)查學(xué)生每人植樹量的平均數(shù),并估計這260名學(xué)生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大酒店客房部有三人間、雙人間和單人間客房,收費數(shù)據(jù)如下表(例如三人間普通間客房每人每天收費50元).為吸引客源,在“十一黃金周”期間進行優(yōu)惠大酬賓,凡團體入住一律五折優(yōu)惠.一個50人的旅游團在十月二號到該酒店住宿,租住了一些三人間、雙人間普通客房,并且每個客房正好住滿,一天一共花去住宿費1510元.
普通間(元/人/天) | 豪華間(元/人/天) | 貴賓間(元/人/天) | |
三人間 | 50 | 100 | 500 |
雙人間 | 70 | 150 | 800 |
單人間 | 100 | 200 | 1500 |
(1)三人間、雙人間普通客房各住了多少間?
(2)設(shè)三人間共住了x人,則雙人間住了 人,一天一共花去住宿費用y元表示,寫出y與x的函數(shù)關(guān)系式;
(3)如果你作為旅游團團長,你認(rèn)為上面這種住宿方式是不是費用最少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AC,BE=CE,下面四個結(jié)論:①BP=CP;②AD⊥BC;③AE平分∠BAC;④∠PBC=∠PCB.其中正確的結(jié)論個數(shù)有( 。﹤.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A(3,0),B兩點,與y軸交于點C,點M(,5)是拋物線上一點,拋物線與拋物線關(guān)于y軸對稱,點A、B、M關(guān)于y軸的對稱點分別為點A′、B′、M′
(1)求拋物線C1的解析式;
(2)過點M′作M′E⊥x軸于點E,交直線A′C于點D,在x軸上是否存在點P,使得以A′、D. P為頂點的三角形與△AB′C相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①,邊長為4的等邊△OAB位于平面直角坐標(biāo)系中,將△OAB折疊,使點B落在OA的中點處,則折痕長為 ;
(2)如圖②,矩形OABC位于平面直角坐標(biāo)系中,其中OA=8,AB=6,將矩形沿線段MN折疊,點B落在x軸上,其中AN=AB,求折痕MN的長;
問題解決:
(3)如圖③,四邊形OABC位于平面直角坐標(biāo)系中,其中OA=AB=6,CB=4,BC∥OA,AB⊥OA于點A,點Q(4,3)為四邊形內(nèi)部一點,將四邊形折疊,使點B落在x軸上,問是否存在過點Q的折痕,若存在,求出折痕長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某草莓種植大戶,今年從草莓上市到銷售完需要20天,售價為15元/千克,成本y(元/千克)與第x天成一次函數(shù)關(guān)系,當(dāng)x=10時,y=7,當(dāng)x=15時,y=6.5.
(1)求成本y(元/千克)與第x天的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)求第幾天每千克的利潤w(元)最大?最大利潤是多少?(利潤=售價-成本)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com