【題目】嘉淇準(zhǔn)備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過計(jì)算說明原題中“”是幾?
【答案】(1)–2x2+6;(2)5.
【解析】
(1)原式去括號、合并同類項(xiàng)即可得;
(2)設(shè)“”是a,將a看做常數(shù),去括號、合并同類項(xiàng)后根據(jù)結(jié)果為常數(shù)知二次項(xiàng)系數(shù)為0,據(jù)此得出a的值.
(1)(3x2+6x+8)﹣(6x+5x2+2)
=3x2+6x+8﹣6x﹣5x2﹣2
=﹣2x2+6;
(2)設(shè)“”是a,
則原式=(ax2+6x+8)﹣(6x+5x2+2)
=ax2+6x+8﹣6x﹣5x2﹣2
=(a﹣5)x2+6,
∵標(biāo)準(zhǔn)答案的結(jié)果是常數(shù),
∴a﹣5=0,
解得:a=5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績較好;
(3)計(jì)算兩隊(duì)決賽成績的方差并判斷哪一個(gè)代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O為直線AB上一點(diǎn),過點(diǎn)O向直線AB上方引三條射線OC、OD、OE,且OC平分∠AOD,∠2=3∠1.
(1)若∠1=18°,求∠COE的度數(shù);
(2)若∠COE=70°,求∠2的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)O,BE平分∠ABC交AC于點(diǎn)F,交AD于點(diǎn)E,且∠DBF=15°,求證:(1)AO=AE; (2)∠FEO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)M,N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí)(如圖1),易證BM+DN=MN.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM,DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC=BC=6.點(diǎn)P射線BA上一點(diǎn),點(diǎn)Q是AC的延長線上一點(diǎn),且BP=CQ,連接PQ,與直線BC相交于點(diǎn)D.
(1)如圖①,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),求CD的長;
(2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)P,Q分別在射線BA和AC的延長線上任意地移動(dòng)過程中,線段BE,DE,CD中是否存在長度保持不變的線段?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在∠AOB的內(nèi)部作射線OC,使∠AOC與∠AOB互補(bǔ).將射線OA,OC同時(shí)繞點(diǎn)O分別以每秒12°,每秒8°的速度按逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)后的射線OA,OC分別記為OM,ON,設(shè)旋轉(zhuǎn)時(shí)間為t秒.已知t<30,∠AOB=114°.
(1)求∠AOC的度數(shù);
(2)在旋轉(zhuǎn)的過程中,當(dāng)射線OM,ON重合時(shí),求t的值;
(3)在旋轉(zhuǎn)的過程中,當(dāng)∠COM與∠BON互余時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解中學(xué)生的體能情況,某校抽取了50名八年級學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出了頻數(shù)分布直方圖如下圖所示已知圖中從左到右前第一、第二、第三、第五小組的頻率分別為0.04 , 0.12 ,0.4 ,O.28 ,根據(jù)已知條件解答下列問題:
(1)第四個(gè)小組的頻率是多少? 你是怎樣得到的?
(2)這五小組的頻數(shù)各是多少?
(3)在這次跳繩中,跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
(4)將頻數(shù)分布直方圖補(bǔ)全,并分別寫出各個(gè)小組的頻數(shù),并畫出頻數(shù)分布折線圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國傳統(tǒng)數(shù)學(xué)的基本框架.其中卷第九勾股,主要講述了以測量問題為中心的直角三角形三邊互求的關(guān)系.其中記載:“今有邑,東西七里,南北九里,各中開門,出東門一十五里有木,問:出南門幾何步而見木?”
譯文:“今有一座長方形小城,東西向城墻長7里,南北向城墻長9里,各城墻正中均開一城門.走出東門15里處有棵大樹,問走出南門多少步恰好能望見這棵樹?”(注:1里=300步)
你的計(jì)算結(jié)果是:出南門 步而見木.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com