如圖,AB是⊙O的直徑,弦BC=2cm,∠ABC=60度.

(1)求⊙O的直徑;
(2)若D是AB延長(zhǎng)線(xiàn)上一點(diǎn),連接CD,當(dāng)BD長(zhǎng)為多少時(shí),CD與⊙O相切;
(3)若動(dòng)點(diǎn)E以2cm/s的速度從A點(diǎn)出發(fā)沿著AB方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F以1cm/s的速度從B點(diǎn)出發(fā)沿BC方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<2),連接EF,當(dāng)t為何值時(shí),△BEF為直角三角形.
【答案】分析:(1)根據(jù)已知條件知:∠BAC=30°,已知AB的長(zhǎng),根據(jù)直角三角形中,30°銳角所對(duì)的直角邊等于斜邊的一半可得AB的長(zhǎng),即⊙O的直徑;
(2)根據(jù)切線(xiàn)的性質(zhì)知:OC⊥CD,根據(jù)OC的長(zhǎng)和∠COD的度數(shù)可將OD的長(zhǎng)求出,進(jìn)而可將BD的長(zhǎng)求出;
(3)應(yīng)分兩種情況進(jìn)行討論,當(dāng)EF⊥BC時(shí),△BEF為直角三角形,根據(jù)△BEF∽△BAC,可將時(shí)間t求出;
當(dāng)EF⊥BA時(shí),△BEF為直角三角形,根據(jù)△BEF∽△BCA,可將時(shí)間t求出.
解答:解:(1)∵AB是⊙O的直徑,
∴∠ACB=90°;
∵∠ABC=60°,
∴∠BAC=180°-∠ACB-∠ABC=30°;
∴AB=2BC=4cm,即⊙O的直徑為4cm.

(2)如圖(1)CD切⊙O于點(diǎn)C,連接OC,則OC=OB=×AB=2cm.
∴CD⊥CO;∴∠OCD=90°;
∵∠BAC=30°,
∴∠COD=2∠BAC=60°;
∴∠D=180°-∠COD-∠OCD=30°;
∴OD=2OC=4cm;
∴BD=OD-OB=4-2=2(cm);
∴當(dāng)BD長(zhǎng)為2cm,CD與⊙O相切.

(3)根據(jù)題意得:
BE=(4-2t)cm,BF=tcm;
如圖(2)當(dāng)EF⊥BC時(shí),△BEF為直角三角形,此時(shí)△BEF∽△BAC;
∴BE:BA=BF:BC;
即:(4-2t):4=t:2;
解得:t=1;
如圖(3)當(dāng)EF⊥BA時(shí),△BEF為直角三角形,此時(shí)△BEF∽△BCA;
∴BE:BC=BF:BA;
即:(4-2t):2=t:4;
解得:t=1.6;
∴當(dāng)t=1s或t=1.6s時(shí),△BEF為直角三角形.
點(diǎn)評(píng):本題考查圓周角定理、切線(xiàn)的性質(zhì)、相似三角形的性質(zhì)、直角三角形的性質(zhì)等知識(shí)的綜合應(yīng)用能力.在求時(shí)間t時(shí)應(yīng)分情況進(jìn)行討論,防止漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線(xiàn)桿,當(dāng)陽(yáng)光與水平線(xiàn)成60°角時(shí),電線(xiàn)桿的影子BC的長(zhǎng)度為4米,則電線(xiàn)桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小亮家窗戶(hù)上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓弧(如圖2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長(zhǎng)線(xiàn)上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問(wèn)題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長(zhǎng)度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線(xiàn)型,在正常水位下測(cè)得主拱寬24m,最高點(diǎn)離水面8m,以水平線(xiàn)AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線(xiàn)所在拋物線(xiàn)的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚(yú)餐船,如果從安全方面考慮,要求通過(guò)愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過(guò)愚溪橋?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線(xiàn)于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線(xiàn)桿,當(dāng)陽(yáng)光與水平線(xiàn)成60°角時(shí),電線(xiàn)桿的影子BC的長(zhǎng)度為4米,則電線(xiàn)桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案