【題目】已知A15),B3,-1)兩點(diǎn),在x軸上取一點(diǎn)M,使AMBM取得最大值時(shí),則M的坐標(biāo)為

【答案】0).

【解析】

一次函數(shù)綜合題,線(xiàn)段中垂線(xiàn)的性質(zhì),三角形三邊關(guān)系,關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo),待定系數(shù)法,直線(xiàn)上點(diǎn)的坐標(biāo)與方程的關(guān)系,解二元一次方程組.

此時(shí)AMBM=AMB′M=AB′

不妨在x軸上任取一個(gè)另一點(diǎn)M′,連接M′A、M′B、M′B

M′AM′B=M′AM′B′AB′(三角形兩邊之差小于第三邊).

∴M′AM′BAM-BM,即此時(shí)AMBM最大.

∵B′B3,-1)關(guān)于x軸的對(duì)稱(chēng)點(diǎn),∴B′3,1).

設(shè)直線(xiàn)AB′解析式為y=kx+b,把A1,5)和B′3,1)代入得:

,解得直線(xiàn)AB′解析式為y=2x+7

y=0,解得x=∴M點(diǎn)坐標(biāo)為(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是菱形,上,延長(zhǎng)線(xiàn)上,相交于點(diǎn),若,,的長(zhǎng)為,則菱形的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一拋物線(xiàn)的頂點(diǎn)的坐標(biāo)是,并且拋物線(xiàn)與軸兩交點(diǎn)間的距離為

試求該拋物線(xiàn)的關(guān)系式;

若點(diǎn)在此拋物線(xiàn)上,且點(diǎn)在第一象限,求以點(diǎn)和坐標(biāo)原點(diǎn)為頂點(diǎn)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABC=90°, P為射線(xiàn)BC上任意一點(diǎn)(點(diǎn)P和點(diǎn)B不重合),分別以AB,AP為邊在∠ABC內(nèi)部作等邊ABE和等邊APQ, 連結(jié)QE并延長(zhǎng)交BP于點(diǎn)F, FQ=6, AB=2,BP=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電器超市銷(xiāo)售A B兩種型號(hào)的電風(fēng)扇,A型號(hào)每臺(tái)進(jìn)價(jià)為200元,B型號(hào)每臺(tái)進(jìn)價(jià)分別為150元,下表是近兩天的銷(xiāo)售情況:

銷(xiāo)售時(shí)段

銷(xiāo)售數(shù)量

銷(xiāo)售收入

A種型號(hào)

B種型號(hào)

第一天

3臺(tái)

5臺(tái)

1620

第二天

4臺(tái)

10臺(tái)

2760

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)售收入-進(jìn)貨成本)

(1)A、B兩種型號(hào)的電風(fēng)扇的銷(xiāo)售單價(jià);

(2)若超市準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)(2)的條件下,超市銷(xiāo)售完這30臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)不少于1060元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列一段文字,然后回答下列問(wèn)題.

已知在平面內(nèi)有兩點(diǎn)P1 x1,y1 ,P1 x2,y2 其兩點(diǎn)間的距離P1P2 = ,同時(shí),當(dāng)兩點(diǎn)所在的直線(xiàn)在坐標(biāo)軸或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時(shí),兩點(diǎn)間距離公式可化簡(jiǎn)為|x2 x1||y2 y1|.

(1)已知 A (1,4)、B (-3,5),試求 A.、B兩點(diǎn)間的距離;

(2)已知 A、B在平行于 y軸的直線(xiàn)上,點(diǎn) A的縱坐標(biāo)為-8,點(diǎn) B的縱坐標(biāo)為-1,試求 AB兩點(diǎn)的距 離;

(3)已知一個(gè)三角形各頂點(diǎn)坐標(biāo)為 D(1,6)、E(-2,2)、F(4,2),你能判定此三角形的形狀嗎?說(shuō)明理由:

(4)(3)的條件下,平面直角坐標(biāo)系中,在 x軸上找一點(diǎn) P,使 PD+PF的長(zhǎng)度最短,求出點(diǎn) P的坐 標(biāo)以及 PD+PF的最短長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017懷化,第10題,4分)如圖,A,B兩點(diǎn)在反比例函數(shù)的圖象上,C,D兩點(diǎn)在反比例函數(shù)的圖象上,ACy軸于點(diǎn)E,BDy軸于點(diǎn)FAC=2,BD=1,EF=3,則的值是( 。

A. 6 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn) B、O分別落在點(diǎn) B1、C1 處,點(diǎn)B1x軸上,再將△AB1C1 繞點(diǎn) B1 順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2 繞點(diǎn)C2 順時(shí)針旋轉(zhuǎn)到△A2B2C2 的位置,點(diǎn) A2 在x軸上,依次進(jìn)行下去….若點(diǎn) A(,0),B(0,4),則點(diǎn) B2016 的橫坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,BD是∠ABC的平分線(xiàn),ADBD,垂足是D

1)求證:∠2=∠1+C;

2)若EDBC,∠ABD28°,求∠ADE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案