【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)既無縫隙又不重疊的四邊形EFGH,若EH4,EF5,那么線段ADAB的比等于_____

【答案】

【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,由“AAS”可證Rt△AHERt△CFG,可得AH=CF=FN,再由勾股定理及直角三角形的面積公式求出ADAB的長,即可求解.

如圖:

由折疊的性質(zhì)可得:∠1∠2∠3∠4,AEEMBE,DHHN,CFFN,

∴∠2+∠390°,

∴∠HEF90°,

同理四邊形EFGH的其它內(nèi)角都是90°

四邊形EFGH是矩形.

EHFG;

∵∠1+∠490°,∠4+∠590°,

∴∠1∠5,

同理∠5∠7∠8,

∴∠1∠8,

∴Rt△AHE≌Rt△CFGAAS),

AHCFFN,

HDHN

ADHF,

Rt△HEF中,EH4,EF5,根據(jù)勾股定理得HFAD,

SEFH×EF×EH×HF×EM

EM,

AB2AE2EM

ADAB4140,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、點(diǎn)B的坐標(biāo)分別為(4,0)、(0,3),將線段BA繞點(diǎn)A沿順時(shí)針旋轉(zhuǎn)90°,設(shè)點(diǎn)B旋轉(zhuǎn)后的對應(yīng)點(diǎn)是點(diǎn)B1,求點(diǎn)B1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過兩點(diǎn),且與軸交于,直線是拋物線的對稱軸,過點(diǎn)的直線與直線相交于點(diǎn),且點(diǎn)在第一象限.

1)求該拋物線的解析式;

2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;

3)點(diǎn)在拋物線的對稱軸上,與直線軸都相切,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支持國家南水北調(diào)工程建設(shè),小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調(diào)查得知,當(dāng)種植櫻桃的面積x不超過15畝時(shí),每畝可獲得利潤y1900元;超過15畝時(shí),每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關(guān)系如下表(為所學(xué)過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)

x(畝)

20

25

30

35

y(元)

1800

1700

1600

1500

1)請求出種植櫻桃的面積超過15畝時(shí)每畝獲得利潤yx的函數(shù)關(guān)系式;

2)如果小王家計(jì)劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設(shè)小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某無人機(jī)興趣小組在操場上開展活動(如圖),此時(shí)無人機(jī)在離地面30米的D處,無人機(jī)測得操控者A的俯角為37°,測得點(diǎn)C處的俯角為45°.又經(jīng)過人工測量操控者A和教學(xué)樓BC距離為57米,求教學(xué)樓BC的高度.(注:點(diǎn)A,B,C,D都在同一平面上.參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線W的圖象與x軸交于AO兩點(diǎn),頂點(diǎn)為點(diǎn)B(﹣1,﹣1).

1)求拋物線W的表達(dá)式;

2)將拋物線W繞點(diǎn)A旋轉(zhuǎn)180°得到拋物線V,使拋物線V的頂點(diǎn)為E,試通過計(jì)算判斷拋物線V是否過點(diǎn)B

3)在拋物線WV的圖象上是否存在點(diǎn)D,使SEBDSEBO?若存在,請求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,∠ACB90°,點(diǎn)D上的一點(diǎn),且,連接ADBC于點(diǎn)F,過點(diǎn)A⊙O的切線AEBC的延長線于點(diǎn)E

1)求證:CFCE;

2)若AD8,AC5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計(jì)了如圖甲和乙的兩種方案:

方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

同步練習(xí)冊答案