如圖,將正△ABC分割成m個(gè)邊長(zhǎng)為1的小正三角形和一個(gè)黑色菱形,這個(gè)黑色菱形可分割成n個(gè) 邊長(zhǎng)為1的小三角形,若,則△ABC的周長(zhǎng)是   
【答案】分析:設(shè)正△ABC的邊長(zhǎng)為x,根據(jù)等邊三角形的高為邊長(zhǎng)的 倍,求出正△ABC的面積,再根據(jù)菱形的性質(zhì)結(jié)合圖形表示出菱形的兩對(duì)角線,然后根據(jù)菱形的面積等于兩對(duì)角線乘積的一半表示出菱形的面積,然后根據(jù)所分成的小正三角形的個(gè)數(shù)的比等于面積的比列式計(jì)算即可得解.
解答:解:設(shè)正△ABC的邊長(zhǎng)為x,則高位x,
S△ABC=x•x=x2
∵所分成的三角形都是正三角形,
∴結(jié)合圖形可得黑色菱形的較長(zhǎng)的對(duì)角線的長(zhǎng)是x-,較短對(duì)角線的長(zhǎng)為(x-)•=x-1,
∴黑色菱形的面積是•(x-)•(x-1)=(x-2)2,
==,
4x2-25x+25=0,
解得:x1=(因?yàn)榉殖蛇呴L(zhǎng)為1的正三角形,所以此數(shù)不符合舍去),x2=5,
∴△ABC的周長(zhǎng)是3×5=15,
故答案為:15.
點(diǎn)評(píng):本題考查了菱形的性質(zhì),等邊三角形的性質(zhì),熟練掌握有一個(gè)角等于60°的菱形的兩條對(duì)角線的關(guān)系是解題的關(guān)鍵,本題難點(diǎn)在于根據(jù)三角形的面積與菱形的面積列出方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點(diǎn)B旋轉(zhuǎn)一定角度(如圖2),試說(shuō)明CD=AE;
(2)已知AB=6,DE=2
3
,把圖1中的△FDE繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說(shuō)明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長(zhǎng)分別是5cm和2
3
cm,問(wèn)在平移過(guò)程中,△ABE是否會(huì)成為等腰三角形?若能,直接寫(xiě)出FB的值;若不能,說(shuō)明理由.       精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將邊長(zhǎng)為15的正方形OEFP置于直角坐標(biāo)系中,OE、OP分別與x軸、y軸的正半軸重合,邊長(zhǎng)為2
3
的等邊△ABC的邊BC垂直于x軸,△ABC從點(diǎn)A與點(diǎn)O重合的位置開(kāi)始,以每秒1個(gè)單位長(zhǎng)的速度先向右平移,當(dāng)BC邊與直線EF重合時(shí),繼續(xù)以同樣的速度向上平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí),△ABC停止移動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為x秒,△PAC的面積為y.
(1)當(dāng)x為何值時(shí),P、A、B三點(diǎn)在同一直線上,求出此時(shí)A點(diǎn)的坐標(biāo);
(2)在△ABC向右平移的過(guò)程中,當(dāng)x分別取何值時(shí),y取最大值和最小值?最大值和最小值分別是多少?
(3)在△ABC移動(dòng)的過(guò)程中,請(qǐng)你就△PAC面積大小的變化情況提出一個(gè)綜合論斷.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:邊城中學(xué)2006-2007年第一學(xué)期中學(xué)數(shù)學(xué)試題 題型:059

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.

(1)若將△FDE繞點(diǎn)B旋轉(zhuǎn)一定角度(如圖2),試說(shuō)明CD=AE;

(2)已知AB=6,DE=,把圖(1)中的△FDE繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說(shuō)明你的理由;

(3)若把圖(1)中的正△FDE沿BA方向平移(如圖4),連結(jié)AE、BE,已知正△ABC和正△FDE的邊長(zhǎng)分別是5 cm和 cm,問(wèn)在平移過(guò)程中,△ABE是否會(huì)成為等腰三角形?若能,直接寫(xiě)出FB的值;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點(diǎn)B旋轉(zhuǎn)一定角度(如圖2),試說(shuō)明CD=AE;
(2)已知AB=6,DE=數(shù)學(xué)公式,把圖1中的△FDE繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說(shuō)明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長(zhǎng)分別是5cm和數(shù)學(xué)公式cm,問(wèn)在平移過(guò)程中,△ABE是否會(huì)成為等腰三角形?若能,直接寫(xiě)出FB的值;若不能,說(shuō)明理由.   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年江蘇省泰州市興化市邊城中學(xué)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,正△ABC和正△FDE,F(xiàn)與B重合,AB與FD在一條直線上.
(1)若將△FDE繞點(diǎn)B旋轉(zhuǎn)一定角度(如圖2),試說(shuō)明CD=AE;
(2)已知AB=6,DE=,把圖1中的△FDE繞點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)90°(如圖3),試判斷四邊形EBDC的形狀,并說(shuō)明你的理由;
(3)若把圖1中的正△FDE沿BA方向平移(如圖4),連接AE、BE,已知正△ABC和正△FDE的邊長(zhǎng)分別是5cm和cm,問(wèn)在平移過(guò)程中,△ABE是否會(huì)成為等腰三角形?若能,直接寫(xiě)出FB的值;若不能,說(shuō)明理由.       

查看答案和解析>>

同步練習(xí)冊(cè)答案