【題目】如圖,直線的解析表達(dá)式為,且與軸交于點(diǎn),直線經(jīng)過點(diǎn),直線,交于點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)求直線的解析表達(dá)式;
(3)求的面積。
【答案】(1)D(1,0);(2)y=x-6;(3).
【解析】
試題分析:(1)已知l1的解析式,令y=0求出x的值即可;
(2)設(shè)l2的解析式為y=kx+b,由圖聯(lián)立方程組求出k,b的值;
(3)聯(lián)立方程組,求出交點(diǎn)C的坐標(biāo),繼而可求出S△ADC.
試題解析:(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)設(shè)直線l2的解析表達(dá)式為y=kx+b,
由圖象知:x=4,y=0;
x=3,y=-,
∴,
∴,
∴直線l2的解析表達(dá)式為 y=x-6;
(3)由,
解得 ,
∴C(2,-3),
∵AD=3,
∴S△ADC=×3×|-3|=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點(diǎn),且AE=BC,過點(diǎn)A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點(diǎn)F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點(diǎn)P由B點(diǎn)出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A點(diǎn)出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動(dòng),它們的速度均為1cm/s,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t s,解答下列問題:
(1)當(dāng)t為何值時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng)?
(2)設(shè)△PQB的面積為S,當(dāng)t為何值時(shí),S取得最大值,并求出最大值;
(3)當(dāng)△PQB為等腰三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a>0)只有一個(gè)整數(shù)解,則a的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出了一些關(guān)于相似的命題,其中真命題有( 。 ①菱形都相似;②等腰直角三角形都相似;③正方形都相似;④矩形都相似;⑤正六邊形都相似.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣1,﹣3)和點(diǎn)B(3,m),且AB平行于x軸,則點(diǎn)B坐標(biāo)為( 。
A. (3,﹣3) B. (3,3) C. (3,1) D. (3,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由一些大小相同,棱長為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個(gè)數(shù).
(1)請畫出它的主視圖和左視圖;
(2)給這個(gè)幾何體噴上顏色(底面不噴色),需要噴色的面積為
(3)在不改變主視圖和俯視圖的情況下,最多可添加塊小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線CP是AB的中垂線且交AB于P,其中AP=2CP.甲、乙兩人想在AB上取兩點(diǎn)D、E,使得AD=DC=CE=EB,其作法如下:
甲:作∠ACP、∠BCP之角平分線,分別交AB于D、E,則D、E即為所求;
乙:作AC、BC之中垂線,分別交AB于D、E,則D、E即為所求.
對于甲、乙兩人的作法,下列判斷何者正確( 。
A. 兩人都正確 B. 兩人都錯(cuò)誤 C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com