【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
【答案】(1)、70°;(2)、30°
【解析】試題分析:(1)、首先根據(jù)垂直得出∠AOE=90°,根據(jù)∠AOC=180°-∠AOE-∠EOD得出答案;(2)、首先設(shè)∠AOC=x,則∠BOC=2x,根據(jù)平角的性質(zhì)得出x的值,根據(jù)∠EOD=180°-AOE-∠AOC得出答案.
試題解析:(1)、∵OE⊥AB, ∴∠AOE=90°, ∵∠EOD=20°, ∴∠AOC=180°﹣90°﹣20°=70°;
(2)、設(shè)∠AOC=x,則∠BOC=2x, ∵∠AOC+∠BOC=180°, ∴x+2x=180°, 解得:x=60°,
∴∠AOC=60°, ∴∠EOD=180°﹣90°﹣60°=30°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點M是二次函數(shù)y=ax2(a>0)圖象上的一點,點F的坐標為(0,),直角坐標系中的坐標原點O與點M,F(xiàn)在同一個圓上,圓心Q的縱坐標為.
(1)求a的值;
(2)當(dāng)O,Q,M三點在同一條直線上時,求點M和點Q的坐標;
(3)當(dāng)點M在第一象限時,過點M作MN⊥x軸,垂足為點N,求證:MF=MN+OF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,排球運動員站在點O處練習(xí)發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m.
(1)當(dāng)h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】⊙O的半徑為7cm,圓心O到直線l的距離為8cm,則直線l與⊙O的位置關(guān)系是( 。
A.相交
B.內(nèi)含
C.相切
D.相離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為6的正△ABC中,若以A為圓心, 以8為半徑作⊙A, 則⊙A與邊BC的交點的個數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點P為AD延長線上一點,連接AC、CP,過點C作CF⊥CP交于C,交AB于點F,過點B作BM⊥CF于點N,交AC于點M.
(1)若AP=AC,BC=4,求S△ACP;
(2)若CP﹣BM=2FN,求證:BC=MC;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10 x元(x為整數(shù))。
⑴(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
⑵(4分)設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
⑶(4分)某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com