【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關系,并證明你的結論。
【答案】BM⊥BN.見解析
【解析】試題分析:根據SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.
解:BM=BN,BM⊥BN,
理由是:在△ABE和△DBC中,
,
∴△ABE≌△DBC(SAS),
∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,
∵∠ABD=∠DBC,∠ABD+∠DBC=180°,
∴∠ABD=∠DBC=90°,
∵M為AE的中點,N為CD的中點,
∴BM=AM=EM=AE,BN=CN=DN=CD,
∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,
∵∠EAB=∠BDC,∠AEB=∠DCB,
∴∠ABM=∠DBN,∠EBM=∠NBC,
∴∠ABC=2∠DBN+2∠EBM=180°,
∴∠EBN+∠EBM=90°,
∴BM⊥BN.
科目:初中數學 來源: 題型:
【題目】根據國家發(fā)改委實施“階梯水價”的有關文件要求,某市結合地方實際,決定從2016年1月1日起對居民生活用水按新的“階梯水價”標準收費,某中學研究學習小組的同學們在社會實踐活動中調查了30戶家庭某月的用水量,如表所示:
用水量(噸) | 15 | 20 | 25 | 30 | 35 |
戶數 | 3 | 6 | 7 | 9 | 5 |
則這30戶家庭該用用水量的眾數和中位數分別是( )
A.25,27 B.25,25 C.30,27 D.30,25
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知反比例函數和一次函數y=2x﹣1,其中一次函數的圖象經過(a,b),(a+2,b+k)兩點.
(1)求:反比例函數的解析式.
(2)如圖,已知點A在第一象限,且同時在上述兩函數的圖象上.求點A的坐標.
(3)利用(2)的結果,問在x軸上是否存在點P,使得△AOP為等腰三角形?若存在,把符合條件的P點坐標直接寫出來;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC邊上的一點,DE⊥AB,DF⊥AC,垂足分別為E、F,添加一個條件,使DE=DF,并說明理由.
解:需添加條件是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com