【題目】已知(x+1)(x﹣2)=x2+mx+n,則m+n=________

【答案】-3

【解析】

已知等式左邊利用多項式乘以多項式法則計算,再利用多項式相等的條件求出mn的值,即可求出m+n的值.

已知等式變形得:x2-x-2=x2+mx+n,

可得m=-1,n=-2,

m+n=-1-2=-3.

故答案為:-3

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(3,2)、(﹣1,0),若將線段BA繞點B順時針旋轉(zhuǎn)90°得到線段BA′,則點A′的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,E是AD上任意一點,延長BA到F,使得AF=AE,連接DF:
(1)旋轉(zhuǎn)△ADF可得到哪個三角形?
(2)旋轉(zhuǎn)中心是哪一點?旋轉(zhuǎn)了多少度?
(3)BE與DF的數(shù)量關系、位置關系如何?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點P,點Q分別代表兩個小區(qū),直線l代表兩個小區(qū)中間的一條公路.根據(jù)居民出行的需要,計劃在公路l上的某處設置一個公交站點.

①若考慮到小區(qū)P居住的老年人較多,計劃建一個離小區(qū)P最近的車站,請在公路l上畫出車站的位置(用點M表示);
②若考慮到修路的費用問題,希望車站的位置到小區(qū)P和小區(qū)Q的距離之和最小,請在公路l上畫出車站的位置(用點N表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【現(xiàn)場學習】
定義:我們把絕對值符號內(nèi)含有未知數(shù)的方程叫做“含有絕對值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有絕對值的方程.
怎樣求含有絕對值的方程的解呢?基本思路是:含有絕對值的方程→不含有絕對值的方程.
我們知道,根據(jù)絕對值的意義,由|x|=2,可得x=2或x=﹣2.
(1)[例]解方程:|2x﹣1|=3.
我們只要把2x﹣1看成一個整體就可以根據(jù)絕對值的意義進一步解決問題.
解:根據(jù)絕對值的意義,得2x﹣1=3或2x﹣1=
解這兩個一元一次方程,得x=2或x=﹣1.
檢驗:
①當x=2時,
原方程的左邊=|2x﹣1|=|2×2﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=2是原方程的解.
②當x=﹣1時,
原方程的左邊=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=﹣1是原方程的解.
綜合①②可知,原方程的解是:x=2,x=﹣1.
【解決問題】
解方程:| |﹣x=1.
(2)【解決問題】解方程:| |﹣x=1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】邊長為724,25ABC內(nèi)有一點P到三邊的距離相等,則這個距離是(  )

A. 1.5 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學在一次用頻率估計概率的實驗中統(tǒng)計了某一結果出現(xiàn)的頻率給出的統(tǒng)計圖如圖所示,則符合這一結果的實驗可能是( 。

A.擲一枚正六面體的骰子,出現(xiàn)5點的概率
B.擲一枚硬幣,出現(xiàn)正面朝上的概率
C.任意寫出一個整數(shù),能被2整除的概率
D.一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下給出的幾何體:球、正方體、圓柱、圓錐中,主視圖是矩形,俯視圖是圓形的是_____

查看答案和解析>>

同步練習冊答案