【題目】9(a+b)2﹣25(a﹣b)2

【答案】4(4b﹣a)(4a﹣b)

【解析】

先對所給多項式進行變形,然后套用公式a2-b2=(a+b)(a-b),再進一步分解因式.

原式=)9(a+b)2-25(a-b)2,
=[3(a+b)]2-[5(a-b)]2
=(8a-2b)(-2a+8b),
=4 (4a﹣b) (4b﹣a)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2-2mx+4m-8的頂點為A

(1) 求證:該拋物線與x軸總有兩個交點

(2) 當(dāng)m=1時,直線BC:y=kx-2與該拋物線交于B、C兩點,若線段BC被x軸平分,求k的值

(3) 以A為一個頂點作該拋物線的內(nèi)接正三角形AMN(M、N兩點在拋物線上),請問:△AMN的面積是與m無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年12月15日,我國“玉兔號”月球車順利抵達月球表面,月球離地球平均距離是384 400 000米,數(shù)據(jù)384 400 000用科學(xué)記數(shù)法表示為( )
A.3.844×108
B.3.844×107
C.3.844×109
D.38.44×109

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市老板到批發(fā)中心選購甲、乙兩種品牌的水杯。甲進貨單價為3元、乙進貨單價為4元;考慮各種因素,預(yù)計購進乙品牌水杯的數(shù)量y(個)與甲品牌水杯的數(shù)量x(個)之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;

(2)若該超市每銷售1個甲水杯可獲利0.5元,每銷售1個乙水杯可獲利1元。請寫出獲利W(元)與x(個)的函數(shù)關(guān)系式;

(3)在(2)的條件下,超市老板決定用不超過700元購進甲、乙兩種品牌的水杯,且這兩種品牌的水杯全部售出后獲利不低于149元,問該超市有幾種進貨方案?哪種方案能使獲利最大?最大獲利為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】14將兩塊全等的含30°角的三角尺如圖1擺放在一起,設(shè)較短直角邊長為3
1四邊形ABCD是平行四邊形嗎?說出你的結(jié)論和理由。

2如圖2,將RtBCD沿射線BD方向平移到RtB1C1D1的位置,四邊形ABC1D1是平行四邊形嗎?說出你的結(jié)論和理由。

3在RtBCD沿射線BD方向平移的過程中,當(dāng)點B的移動距離為多少時四邊形ABC1D1為矩形?當(dāng)點B的移動距離為多少 時,四邊形ABC1D1為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2-y2=-1.(x-y)2019(x+ y)2019 =________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AECD,AE分別交CDBD于點MP,CDBE于點Q,連接PQ,BM,下面結(jié)論:

①△ABE≌△DBC;②∠DMA=60°③△BPQ為等邊三角形;④MB平分∠AMC

其中結(jié)論正確的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AD⊥BC,垂足為點D,AN△ABC外角∠CAM的平分線,CE⊥AN,垂足為點E,

(1)求證:四邊形ADCE為矩形;

(2)當(dāng)△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,弦CDAB,垂足為M,下列結(jié)論不成立的是(

ACM=DM B= CACD=ADC DOM=MD

查看答案和解析>>

同步練習(xí)冊答案