【題目】如圖所示,一段街道的兩邊緣所在直線分別為AB PQ,并且ABPQ.建筑物的一端DE所在的直線MNAB于點M,交PQ于點N,步行街寬MN13.4米,建筑物寬DE6米,光明巷寬EN2.4.小亮在勝利街的A處,測得此時AM12米,求此時小亮距建筑物拐角D處有多遠(yuǎn)?

【答案】13米.

【解析】

試題連接AD,先根據(jù)步行街寬MN13.4米,建筑物寬DE6米,光明巷寬EN2.4米求出MD的長,再根據(jù)勾股定理即可得出AD的長.

試題解析:∵AB∥PQMN⊥AB,交PQ于點N,MN=13.4米,

DE=6米,EN=2.4米.

∴MD=13.4﹣6﹣2.4=5(米),

∴AD===13米.

答:此時小亮距建筑物拐角D處有13米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+4A(1,﹣1),B(5,﹣1),與y軸交于點C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖1,連接CB,若點P在直線BC上方的拋物線上,△BCP的面積為15,求點P的坐標(biāo);
(3)如圖2,⊙O1過點A、B、C三點,AE為直徑,點M為弧ACE上的一動點(不與點A,E重合),∠MBN為直角,邊BN與ME的延長線交于N,求線段BN長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形OABC是菱形,CD⊥x軸,垂足為D,函數(shù) 的圖象經(jīng)過點C,且與AB交于點E,若OD=2,則△OCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB在數(shù)軸上對應(yīng)的數(shù)分別用a、b表示,且(a﹣20)2+|b+10|=0,P是數(shù)軸上的一個動點.

(1)在數(shù)軸上標(biāo)出AB的位置,并求出A、B之間的距離;

(2)已知線段OB上有點C|BC|=6,當(dāng)數(shù)軸上有點P滿足PB=2PC時,求P點對應(yīng)的數(shù);

(3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,…….點P能移動到與AB重合的位置嗎?若不能,請直接回答;若能,請直接指出,第幾次移動,與哪一點重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了能以“更新、更綠、更潔、更寧”的城市形象迎接2011年大運會的召開,深圳市全面實施市容市貌環(huán)境提升行動.某工程隊承擔(dān)了一段長為1500米的道路綠化工程,施工時有兩張綠化方案: 甲方案是綠化1米的道路需要A型花2枝和B型花3枝,成本是22元;
乙方案是綠化1米的道路需要A型花1枝和B型花5枝,成本是25元.
現(xiàn)要求按照乙方案綠化道路的總長度不能少于按甲方案綠化道路的總長度的2倍.
(1)求A型花和B型花每枝的成本分別是多少元?
(2)求當(dāng)按甲方案綠化的道路總長度為多少米時,所需工程的總成本最少?總成本最少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小華利用含30°角的三角板測量樓房高度的示意圖,已知桌子高AB為1米,地面上B和D之間的距離為100米,則樓高CD約為(
A.51米
B.59米
C.88米
D.174米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)如圖是規(guī)格為8×8的正方形網(wǎng)格,請在所給網(wǎng)格中按下列要求操作:

(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點坐標(biāo)為(2,4),B點坐標(biāo)為(4,2);

(2)在第二象限內(nèi)的格點上畫一點C,使點C與線段AB組成一個以AB為底的等腰三角形,且腰長是無理數(shù),則C點坐標(biāo)是________;

(3)ABC的周長=_________(結(jié)果保留根號);

(4)畫出ABC關(guān)于關(guān)于y軸對稱的ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A路口的交通信號燈依次顯示為紅燈亮20秒,綠燈亮40秒,再紅燈亮20秒,綠燈亮40秒,如此連續(xù)不斷循環(huán)顯示下去…
(1)求A路口顯示紅燈的概率.
(2)小亮上班路上會遇到A,B兩個路口,B路口紅綠燈的顯示方式和A路口完全相同,求他在上班路上兩次都遇到紅燈的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).

(1)按下列要求作圖:
①將△ABC向左平移4個單位,得到△A1B1C1;
②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A2B2C2
(2)求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.

查看答案和解析>>

同步練習(xí)冊答案