【題目】如圖,四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°,若CD=4,則DE長(zhǎng)為_____.
【答案】
【解析】
過C點(diǎn)作CF∥AB交AD于點(diǎn)F,設(shè)BC=AF=a,根據(jù)平行四邊形和等腰直角三角形的性質(zhì)構(gòu)造平行四邊形,根據(jù)勾股定理,求出梯形上底長(zhǎng),再根據(jù)梯形面積等于三個(gè)三角形面積和求解即可.
解:如圖:
過C點(diǎn)作CF∥AB交AD于點(diǎn)F,∵AD∥BC,
∴四邊形ABCF是平行四邊形,∴CF=AB,BC=AF,
設(shè)BC=AF=a,
∵AD∥BC,∠BCD=90°,∠DAC=45°,
∴∠DAC=∠DCA=45°,
∴AD=CD=4,
∴DF=AD﹣AF=4﹣a,
∵AB=BC+AD,
∴CF=AB=a+4.
在Rt△CDF中,根據(jù)勾股定理,得
(a+4)2=(4﹣a)2+42,解得a=1,
∴BC=1,AB=5.
作EH⊥AB于點(diǎn)H,∵∠EAB=45°,
∴∠AEH=45°,
∴AH=EH=AE.
設(shè)DE=x,則CE=4﹣x,
在Rt△ADE中,AE= ,S△ADE=ADDE=2x.
在Rt△BCE中,S△BCE=BCCE=(4﹣x).
在Rt△ABE中,S△ABE=ABEH= .
S梯形ABCD=CD(BC+AD)=10.
S梯形ABCD=S△ADE+S△BCE+S△ABE,
即10=2x+(4﹣x)+.
整理得:7x2+192x﹣112=0,
解得:x=或x=﹣28(舍去).
所以DE的長(zhǎng)為./p>
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4π,BC=3π,半徑是2的⊙O從與AC相切于點(diǎn)D的位置出發(fā),在△ABC外部按順時(shí)針方向沿三角形滾動(dòng),又回到與AC相切于點(diǎn)D的位置,則⊙O自轉(zhuǎn)了( 。
A.2周B.3周C.4周D.5周
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ABC=90°
(1)在BC邊上找一點(diǎn)P,作⊙P與AC,AB邊都相切,與AC的切點(diǎn)為Q;(尺規(guī)作圖,保留作圖痕跡)
(2)若AB=4,AC=6,求第(1)題中所作圓的半徑;
(3)連接BQ,第(2)題中的條件不變,求cos∠CBQ的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2-4n+4經(jīng)過點(diǎn)P(2,4),與x軸交于A、B兩點(diǎn),過點(diǎn)P作直線l∥x軸,點(diǎn)C為第二象限內(nèi)直線l上方,拋物線上一個(gè)動(dòng)點(diǎn),其橫坐標(biāo)為m。
(1)如圖(1),若AB=6, 求拋物線解析式
(2)如圖(2),在(1)的條件下,設(shè)點(diǎn)C的橫坐標(biāo)為t,ACP的面積S,求S與t之間的函數(shù)關(guān)系式.
(3)如圖(3),連接OP,過點(diǎn)C作EC∥OP交拋物線于點(diǎn)E,直線PE、CP分別交x軸于點(diǎn)G、H,當(dāng)PG=PH時(shí),求a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O是以數(shù)軸的原點(diǎn)O為圓心,以3為半徑的圓,∠AOB=45°,點(diǎn)P在數(shù)軸上運(yùn)動(dòng).若過點(diǎn)P與OA平行的直線與⊙O有公共點(diǎn),設(shè)點(diǎn)P在數(shù)軸上表示的數(shù)為x.則x的取值范圍是( 。
A.0≤x≤3B.x>3C.﹣3≤x≤3D.﹣3≤x≤3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點(diǎn),連結(jié)AC,BC,分別以AC、BC為直徑作半圓,其中M,N分別是AC、BC為直徑作半圓弧的中點(diǎn),,的中點(diǎn)分別是P,Q.若MP+NQ=7,AC+BC=26,則AB的長(zhǎng)是( )
A.17B.18C.19D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).
(1)求一次函數(shù)和二次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球;B乒乓球;C羽毛球;D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有__________人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(1)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一面靠墻(墻的最大可用長(zhǎng)度為8 m)的空地上用長(zhǎng)為24 m的籬笆圍成中間隔有二道籬笆的長(zhǎng)方形花圃.設(shè)花圃的寬AB為x m,面積為S m2.
(1)求S關(guān)于x的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求所圍成花圃的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com