【題目】在平行四邊形ABCD中,點E在AD邊上,連接BE、CE,EB平分∠AEC .
(1)如圖1,判斷△BCE的形狀,并說明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)結論: 是等腰三角形,根據(jù)平行四邊形的性質(zhì)以及已知條件,只要證明即可.
(2)先證明四邊形ABCD是矩形,然后分別在 和中利用勾股定理即可解決問題.
試題解析:(1)如圖1中,結論:△BCE是等腰三角形.
證明:∵四邊形ABCD是平行四邊形,
∴BC∥AD,
∴∠CBE=∠AEB,
∵BE平分∠AEC,
∴∠AEB=∠BEC,
∴∠CBE=∠BEC,
∴CB=CE,
∴△CBE是等腰三角形.
(2)如圖2中,∵四邊形ABCD是平行四邊形,∠A=90°,
∴四邊形ABCD是矩形,
∴∠A=∠D=90°,BC=AD=5,
在RT△ECD中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,
在中,∵∠A=90°AB=3.AE=1,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一個點從數(shù)軸上的原點開始,先向左移動到達點,再向左移動 到達點,然后向右移動到達點
(1)用1個單位長度表示,請你在數(shù)軸上表示出、、三點的位置;
(2)把點到點的距離記為,則=_______ .
(3)若點以每秒的速度向左移動,同時、點分別以每秒、的速度向右移動.設移動時間為秒,試探索: 的值是否會隨著的變化而改變?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某地區(qū)5000名九年級學生體育成績狀況,隨機抽取了若干名學生進行測試,將成績按A,B,C,D四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請你結合圖中所給信息解答下列問題:
(1)在這次抽樣調(diào)查中,一共抽取了______名學生;
(2)請把條形統(tǒng)計圖補充完整;
(3)請估計該地區(qū)九年級學生體育成績?yōu)?/span>B級的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用小立方體搭成一個幾何體,從正面和上面看到該幾何體的形狀圖如圖所示,搭建這樣的幾何體最多要幾個小立方體?最少要幾個小立方體?并畫出最多和最少時從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=.點D從B點開始運動到C點結束(點D和B、C均不重合),DE交AC于E,∠ADE=45°,當△ADE是等腰三角形時,AE的長度為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都
停止運動,設點P、Q運動的時間為t秒.
(Ⅰ)在運動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經(jīng)過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com