已知,如圖,延長(zhǎng)△ABC的各邊,使得BF=AC,AE=CD=AB,順次連接D,E,F(xiàn),得到△DEF為等邊三角形.求證:
(1)△AEF≌△CDE;
(2)△ABC為等邊三角形.
證明:(1)∵BF=AC,AB=AE(已知)
∴FA=EC(等量加等量和相等).
∵△DEF是等邊三角形(已知),
∴EF=DE(等邊三角形的性質(zhì)).
又∵AE=CD(已知),
∴△AEF≌△CDE(SSS).
(2)由△AEF≌△CDE,得∠FEA=∠EDC(對(duì)應(yīng)角相等),
∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代換),
△DEF是等邊三角形(已知),
∴∠DEF=60°(等邊三角形的性質(zhì)),
∴∠BCA=60°(等量代換),
由△AEF≌△CDE,得∠EFA=∠DEC,
∵∠DEC+∠FEC=60°,
∴∠EFA+∠FEC=60°,
又∠BAC是△AEF的外角,
∴∠BAC=∠EFA+∠FEC=60°,
∴△ABC中,AB=BC(等角對(duì)等邊).
∴△ABC是等邊三角形(等邊三角形的判定).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
小龍?jiān)趯W(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū)450戶(hù)居民的家庭收入情況. 他從中隨機(jī)調(diào)查了40戶(hù)居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
分組 | 頻數(shù) | 百分比 |
600≤<800 | 2 | 5% |
800≤<1000 | 6 | 15% |
1000≤<1200 | 45% | |
9 | 22.5% | |
1600≤<1800 | 2 | |
合計(jì) | 40 | 100% |
根據(jù)以上提供的信息,解答下列問(wèn)題:(1)補(bǔ)全頻數(shù)分布表.(2)補(bǔ)全頻數(shù)分布直方圖.(3)繪制相應(yīng)的頻數(shù)分布折線圖.(4)請(qǐng)你估計(jì)該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶(hù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,亮亮?xí)系娜切伪荒E污染了一部分,很快他就根據(jù)所學(xué)知識(shí)畫(huà)出一個(gè)與書(shū)上完全一樣的三角形,那么這兩個(gè)三角形完全一樣的依據(jù)是( 。
A. SSS B. SAS C. AAS D. ASA
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長(zhǎng)線上的點(diǎn),且DE=DF,連接BF,CE、下列說(shuō)法:①CE=BF;②△ABD和△ACD面積相等;③BF∥CE;④△BDF≌△CDE.其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
化簡(jiǎn)(﹣x)3(﹣x)2,結(jié)果正確的是( 。
A. ﹣x6 B. x6 C. x5 D. ﹣x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列代數(shù)式中:3+a;;0;﹣a;;;3x2﹣2x+1;a2﹣b2;a2b2.
單項(xiàng)式:
多項(xiàng)式:
整式: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com