【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DEAC,CEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點(diǎn)F,當(dāng)∠ADB30°,DE3時(shí),求菱形ABCD的面積.

【答案】(1)見(jiàn)解析;(2).

【解析】

1)根據(jù)菱形的性質(zhì)求出∠DOC=90°,根據(jù)平行四邊形和矩形的判定得出即可;
2)根據(jù)矩形和菱形的性質(zhì)即可得到結(jié)論.

1)證明: ∵四邊形ABCD是菱形,

ACBD, 即∠DOC90°,

DEACCEBD,

∴四邊形DECO是平行四邊形

∴四邊形DECO是矩形;

2)解:∵四邊形ABCD是菱形 AOOC,

∵四邊形DECO是矩形 DEOC,

DE3 DEAO3,

∵∠ADB30°ACBD,

AD2OA2×36

OD3

AC6,BD6,

∴菱形ABCD的面積=ACBD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是( 。

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,平面直角坐標(biāo)系中,直線 y1=x+3與拋物線y2=﹣+2x 的圖象如圖,點(diǎn)P是 y2 上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線 y1 的最短距離為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為 B,且拋物線不過(guò)第三象限.

(1)過(guò)點(diǎn)B作直線l垂直于x軸于點(diǎn)C,若點(diǎn)C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說(shuō)明理由;

(3)若直線y2=2x+m經(jīng)過(guò)點(diǎn)B,且與拋物線交于另外一點(diǎn)D(,b+8),求當(dāng)≤x<5時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)角線長(zhǎng)分別為68的菱形ABCD如圖所示,點(diǎn)O為對(duì)角線的交點(diǎn),過(guò)點(diǎn)O折疊菱形,使B,B′兩點(diǎn)重合,MN是折痕.若B'M=1,則CN的長(zhǎng)為( 。

A. 7 B. 6 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列兩則材料,回答問(wèn)題,材料一:定義直線yax+b與直線ybx+a互為互助直線,例如,直線yx+4與直y4x+1互為互助直線;材料二:對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1x1,y1)、P2x2,y2),P1、P2兩點(diǎn)間的直角距離dP1,P2)=|x1x2|+|y1y2|.如:Q1(﹣3,1)、Q22,4)兩點(diǎn)間的直角距離為dQ1Q2)=|32|+|14|8;材料三:設(shè)P0x0y0)為一個(gè)定點(diǎn),Qx,y)是直線yax+b上的動(dòng)點(diǎn),我們把dP0,Q)的最小值叫做P0到直線yax+b的直角距離.

1)計(jì)算S(﹣1,6),T(﹣2,3)兩點(diǎn)間的直角距離dST)=   ;

2)直線y=﹣2x+3上的一點(diǎn)Hab)又是它的互助直線上的點(diǎn),求點(diǎn)H的坐標(biāo).

3)對(duì)于直線yax+b上的任意一點(diǎn)Mm,n),都有點(diǎn)N3m,2m3n)在它的互助直線上,試求點(diǎn)L5,﹣1)到直線yax+b的直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動(dòng)一個(gè)半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點(diǎn)滾動(dòng)到D點(diǎn)其圓心所經(jīng)過(guò)的路線長(zhǎng)為___________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教科書中這樣寫道:“我們把多項(xiàng)式叫做完全平方式,如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng)使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變這種方法叫做配方法.配方法是一種重要的解決問(wèn)題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決一些與非負(fù)數(shù)有關(guān)的問(wèn)題或求化數(shù)式最大值.最小值等.

例如:分解因式

;例如求代數(shù)式的最小值..可知當(dāng)時(shí),有最小值,最小值是,根據(jù)閱讀材料用配方法解決下列問(wèn)題:

1)分解因式: _____

2)當(dāng)為何值時(shí),多項(xiàng)式有最小值,并求出這個(gè)最小值.

3)當(dāng)為何值時(shí).多項(xiàng)式有最小值并求出這個(gè)最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】凸四邊形ABCD的兩條對(duì)角線和兩條邊的長(zhǎng)度都為1,則四邊形ABCD中最大內(nèi)角度數(shù)為( 。

A.150°B.135°C.120°D.105°

查看答案和解析>>

同步練習(xí)冊(cè)答案