【題目】如圖,⊙I是△ABC的內切圓,切點分別是D、E、F.
(1)若∠B=50°,∠C=70°,則∠DFE的度數為 ;
(2)若∠DFE=50°,求∠A的度數.
【答案】(1)60°;(2)∠A=80°
【解析】
(1)連接DI和EI,根據三角形的內角和定理求得∠A=60°,再根據切線的性質以及四邊形的內角和定理,得∠DOE=120°,再根據圓周角定理得∠DFE=60°;
(2)根據圓周角定理得∠DOE=100°,再根據切線的性質以及四邊形的內角和定理,得∠A=80°.
(1) 連接ID、IE
由題可知:∠A=180°-∠B -∠C=180°-50° -70°= 60°
∵AD、AE分別切⊙I 于D、E
∴DI⊥AB,IE⊥AC
∴∠ADI=∠AEI=90°
∴∠DIE=120°
∴∠DFE=60°
(2)∵∠DFE=50°
∴∠DIE=100°
∵AD、AE分別切⊙I 于D、E
∴DI⊥AD,IE⊥AE
∴∠ADI=∠AEI=90°
∴∠A=80°
科目:初中數學 來源: 題型:
【題目】已知△ABC的一條邊BC的長為5,另兩邊AB,AC的長分別為關于x的一元二次方程的兩個實數根。
(1)求證:無論k為何值,方程總有兩個不相等的實數根;
(2)當k=2時,請判斷△ABC的形狀并說明理由;
(3)k為何值時,△ABC是等腰三角形,并求△ABC的周長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形ABCD和AEFG都是正方形,
(1)如圖1,E、G分別在AB、AD上,連CF,H為CF的中點,EH與DH的位置關系是 ,數量關系是 .
(2)如圖2,在圖1的基礎上,把正方形AEFG繞A點順時針旋轉α(α為銳角),(1)中結論是否仍成立?若成立,請證明;若不成立,請說明理由.
(3)如圖3,在(2)旋轉過程中,當點F落在BC上,且AE:AB= 時,有AB平分EF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在某次數學活動中,如圖有兩個可以自由轉動的轉盤A、B,轉盤A被分成四個相同的扇形,分別標有數字1、2、3、4,轉盤B被分成三個相同的扇形,分別標有數字5、6、7.若是固定不變,轉動轉盤(如果指針指在等分線上,那么重新轉動,直至指針指在某個扇形區(qū)域內為止)
(1)若單獨自由轉動A盤,當它停止時,指針指向偶數區(qū)的概率是 .
(2)小明自由轉動A盤,小穎自由轉動B盤,當兩個轉盤停止后,記下各個轉盤指針所指區(qū)域內對應的數字,請用畫樹狀圖或列表法求所得兩數之積為10的倍數的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現代互聯網技術的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數分別為10萬件和12.1萬件.現假定該公司每月投遞的快遞總件數的增長率相同.
(1)求該快遞公司投遞快遞總件數的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的y與x的部分對應值如表:
x | 1 | 0 | 2 | 3 | 4 |
y | 5 | 0 | 4 | 3 | 0 |
下列結論:①拋物線的開口向上;②拋物線的對稱軸為直線x=2;③當0<x<4時,y>0;④拋物線與x軸的兩個交點間的距離是4;⑤若A(,2),B(,3)是拋物線上兩點,則,其中正確的個數是 ( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】農經公司以30元/千克的價格收購一批農產品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關系,經過市場調查獲得部分數據如下表:
銷售價格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日銷售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)請你根據表中的數據,用所學過的一次函數、二次函數、反比例函數的知識確定p與x之間的函數表達式;
(2)求日銷售利潤W與X之間的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數
(1)當k=3時,求函數圖像與x軸的交點坐標;
(2)函數圖像的對稱軸與原點的距離為3,求k的值
(3)設二次函數圖像上的一點P(x,y)滿足時,y≤2,求k的取值范圍。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com