【題目】如圖,已知等邊△ABC中,D為邊AC上一點.
(1)以BD為邊作等邊△BDE,連接CE,求證:AD=CE;
(2)如果以BD為斜邊作Rt△BDE,且∠BDE=30°,連接CE并延長,與AB的延長線交于F點,求證:AD=BF;
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)欲證明AD=CE,只要證明△ABD≌△CBE即可;
(2)如圖2中,倍長BE到H,連CH,DH.首先證明△DBH是等邊三角形,由(1)可知,△ABD≌△CBH,推出AD=CH,∠A=∠HCB=∠ABC=60°,推出BF∥CH,推出∠F=∠ECH,再證明△EBF≌△EHC,推出BF=CH,由此即可證明.
(1)證明:如圖1中,
∵△ABC,△BDE都是等邊三角形,
∴AB=BC,BD=BE,∠ABC=∠DBE=60°,
∴∠ABD=∠CBE,
在△ABD和△CBE中, ,
∴△ABD≌△CBE,
∴AD=CE.
(2)如圖2中,倍長BE到H,連CH,DH.
∵BE=EH,DE⊥BH,
∴DB=DH,∠BDE=∠HDE=30°,
∴∠BDH=60°,
∴△DBH是等邊三角形,
由(1)可知,△ABD≌△CBH,
∴AD=CH,∠A=∠HCB=∠ABC=60°,
∴BF∥CH,
∴∠F=∠ECH,
在△EBF和△EHC中, ,
∴△EBF≌△EHC,
∴BF=CH,
∴AD=CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽寫”比賽,每位學(xué)生聽寫漢字39個.隨機(jī)抽取了部分學(xué)生的聽寫結(jié)果,繪制成如下的圖表.
組別 | 正確字?jǐn)?shù)x | 人數(shù) |
A | 0≤x<8 | 10 |
B | 8≤x<16 | 15 |
C | 16≤x<24 | 25 |
D | 24≤x<32 | m |
E | 32≤x<40 | n |
根據(jù)以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“C組”所對應(yīng)的圓心角的度數(shù)是 ;
(3)已知該校共有900名學(xué)生,如果聽寫正確的字的個數(shù)少于24個定為不合格,請你估計該校本次聽寫比賽不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰三角形板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點。圖①,②,③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。研究:
(1)三角板ABC繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明。
(2)三角板ABC繞點P旋轉(zhuǎn),△PBE是否能為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由。(圖④不用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校團(tuán)委為積極參與“陶行知杯.全國書法大賽”現(xiàn)場決賽,向?qū)W校學(xué)生征集書畫作品,今年3月份舉行了“書畫比賽”初賽,初賽成績評定為A,B,C,D,E五個等級.該校七年級書法班全體學(xué)生參加了學(xué)校的比賽,并將比賽結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列問題.
(1)該校七年級書法班共有 名學(xué)生;扇形統(tǒng)計圖中C等級所對應(yīng)扇形的圓心角等于 度,并補(bǔ)全條形統(tǒng)計圖;
(2)A等級的4名學(xué)生中有2名男生,2名女生,現(xiàn)從中任意選取2名學(xué)生參加“陶行知杯.全國書法大賽”現(xiàn)場決賽,請你用列表法或畫樹狀圖的方法,求出恰好選到1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù),導(dǎo)致了第一次數(shù)學(xué)危機(jī).是無理數(shù)的證明如下:
假設(shè)是有理數(shù),那么它可以表示成(與是互質(zhì)的兩個正整數(shù)).于是,所以,.于是是偶數(shù),進(jìn)而是偶數(shù).從而可設(shè),所以,,于是可得也是偶數(shù).這與“與是互質(zhì)的兩個正整數(shù)”矛盾,從而可知“是有理數(shù)”的假設(shè)不成立,所以,是無理數(shù).這種證明“是無理數(shù)”的方法是( )
A.綜合法B.反證法C.舉反例法D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角三角形中,,點從開始沿邊向點以的速度移動,點從點開始沿邊向點以的速度移動. 分別從同時出發(fā),當(dāng)一個動點到達(dá)終點則另一動點也隨之停止運動,
(1)求為何值時,為等腰三角形?
(2)是否存在某一時刻,使點在線段的垂直平分線上?
(3)點在運動的過程中,是否存在某時刻, 直線把的周長分為兩部分?若存在,求出,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.
(1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;
(2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,,點是軸上點,點為的中點.
(1)求證:;
(2)若點在軸正半軸上,且與的距離等于,求點的坐標(biāo);
(3)如圖2,若點在軸正半軸上,且于點,當(dāng)四邊形為平行四邊形時,求直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com