甲、乙兩輛汽車沿同一路線從A地前往B地,甲以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).到達(dá)B地后,乙按原速度返回A地,甲以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時(shí)間為t(時(shí)),s與t之間的函數(shù)圖象如圖所示.
(1)求a的值.
(2)求甲車維修所用時(shí)間.
(3)求兩車在途中第二次相遇時(shí)t的值.
(4)當(dāng)兩車相距40千米時(shí),t的取值范圍是______.

解:(1)由函數(shù)圖象,得
a=120÷3=40

(2)由題意,得
5.5-3-120÷(40×2),
=2.5-1.5,
=1.
∴甲車維修的時(shí)間為1小時(shí);

(3)∵甲車維修的時(shí)間是1小時(shí),
∴B(4,120).
∵乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).
∴E(5,240).
∴乙行駛的速度為:240÷3=80,
∴乙返回的時(shí)間為:240÷80=3,
∴F(8,0).
設(shè)BC的解析式為y1=k1t+b1,EF的解析式為y2=k2t+b2,由圖象,得
,,
解得:,
∴y1=80t-200,y2=-80t+640,
當(dāng)y1=y2時(shí),
80t-200=-80t+640,
t=5.25.
∴兩車在途中第二次相遇時(shí)t的值為5.25小時(shí),

(4)設(shè)乙車出發(fā)x小時(shí)時(shí)與甲車相距40km,由題意及函數(shù)圖象,得
120-40=80x,或80x-120=40
x=1,或x=2,
∴t=3,t=4.
∴由圖象得:4<t≤5或5.5≤t≤8時(shí),
綜上所述,當(dāng)t=3,4≤t≤5或5.5≤t≤8時(shí)兩車相距40千米.
故答案為:t=3,4≤t≤5或5.5≤t≤8
分析:(1)由圖象的數(shù)量關(guān)系,由速度=路程÷時(shí)間就可以直接求出結(jié)論;
(2)先由圖象求出條件求出行駛后面路程的時(shí)間久可以求出維修用的時(shí)間;
(3)由圖象求出BC和EF的解析式,然后由其解析式構(gòu)成二元一次方程組就可以求出t的值;
(4)設(shè)乙車出發(fā)x小時(shí)時(shí)與甲車相距40km,通過(guò)函數(shù)圖象有120-40=80x,或80x-120=40,可以求出t值,根據(jù)后面甲、乙速度相等而在維修好后甲乙之間剛好相距40,根據(jù)函數(shù)圖象可以求出t的取值范圍.
點(diǎn)評(píng):本題是一道一次函數(shù)的綜合試題,考查了行程問(wèn)題的數(shù)量關(guān)系的運(yùn)用,追擊問(wèn)題的運(yùn)用,待定系數(shù)法求一次函數(shù)的解析式的運(yùn)用,一次函數(shù)與二元一次方程組的運(yùn)用,解答時(shí)第四問(wèn)時(shí)難點(diǎn),需要用到追擊問(wèn)題的數(shù)量關(guān)系建立方程求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480km的目的地,乙車比甲車晚出發(fā)2h(從甲車出發(fā)時(shí)開始計(jì)時(shí)).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段AB表示甲車出發(fā)不足2h因故障停車檢修).請(qǐng)根據(jù)圖象所提供的信息,解決以下問(wèn)題:
(1)求乙車所行路程y與時(shí)間x之間的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時(shí),它們距出發(fā)地的路程;
(3)乙車出發(fā)多長(zhǎng)時(shí)間,兩車在途中第一次相遇.(寫出解題過(guò)程)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•道里區(qū)一模)甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,甲出發(fā)不久因故停車檢修,修好后甲車?yán)^續(xù)向前行駛.乙車比甲車晚出發(fā)(從甲車出發(fā)時(shí)開始計(jì)時(shí)).圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象.根據(jù)圖象中所提供的信息,有下列說(shuō)法:①乙車比甲車晚2小時(shí)出發(fā);②甲車修好后行駛了1.5小時(shí)與乙車在途中第二次相遇;③乙車行駛的平均速度為每小時(shí)48千米;④甲、乙兩車到達(dá)目的地所用的時(shí)間相同.符合圖象描述的說(shuō)法有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(shí),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與實(shí)踐x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段AB表示甲因故障停車檢修).
(1)求乙車所行路程y與時(shí)間x的函數(shù)關(guān)系式.
(2)求駕車發(fā)生故障時(shí),距出發(fā)點(diǎn)的路程是多少千米?
(3)若甲、乙兩車之間的距離不超過(guò)30千米時(shí)能保持聯(lián)絡(luò)暢通,求甲、乙兩車在兩次相遇之間能保持聯(lián)絡(luò)暢通時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年安徽省蕪湖市初中畢業(yè)學(xué)業(yè)考試模擬試卷數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(shí)(從甲車出發(fā)時(shí)開始計(jì)時(shí)).圖中折線、線段分別表示甲、乙兩車所行路程(千米)與時(shí)間(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖象(線段表示甲出發(fā)不足2小時(shí)因故停車檢修).請(qǐng)根據(jù)圖象所提供的信息,解決如下問(wèn)題:
(1)求乙車所行路程與時(shí)間的函數(shù)關(guān)系式;
(2)求兩車在途中第二次相遇時(shí),它們距出發(fā)地的路程;
(3)乙車出發(fā)多長(zhǎng)時(shí)間,兩車在途中第一次相遇?(寫出解題過(guò)程)

查看答案和解析>>

同步練習(xí)冊(cè)答案