(2010•咸寧)如圖,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.動(dòng)點(diǎn)M以每秒1個(gè)單位長(zhǎng)的速度,從點(diǎn)A沿線段AB向點(diǎn)B運(yùn)動(dòng);同時(shí)點(diǎn)P以相同的速度,從點(diǎn)C沿折線C-D-A向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)M到達(dá)點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).過(guò)點(diǎn)M作直線l∥AD,與線段CD的交點(diǎn)為E,與折線A-C-B的交點(diǎn)為Q.點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒).
(1)當(dāng)t=0.5時(shí),求線段QM的長(zhǎng);
(2)當(dāng)0<t<2時(shí),如果以C、P、Q為頂點(diǎn)的三角形為直角三角形,求t的值;
(3)當(dāng)t>2時(shí),連接PQ交線段AC于點(diǎn)R.請(qǐng)?zhí)骄?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131021231126394172731/SYS201310212311263941727004_ST/0.png">是否為定值?若是,試求這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.
【答案】分析:(1)過(guò)點(diǎn)C作CF⊥AB于F,則四邊形AFCD為矩形,易知CF=4,AF=2,利用平行線分線段成比例定理的推論可知Rt△AQM∽R(shí)t△ACF,那么可得比例線段,從而求出QM;
(2)由于∠DCA為銳角,故有兩種情況:
①當(dāng)∠CPQ=90°時(shí),點(diǎn)P與點(diǎn)E重合,可得DE+CP=CD,從而可求t;②當(dāng)∠PQC=90°時(shí),如備用圖1,容易證出Rt△PEQ∽R(shí)t△QMA,再利用比例線段,結(jié)合EQ=EM-QM=4-2t,可求t;
(3)為定值.當(dāng)t>2時(shí),如備用圖2,先證明四邊形AMQP為矩形,再利用平行線分線段成比例定理的推論可得△CRQ∽△CAB,再利用比例線段可求
解答:解:(1)過(guò)點(diǎn)C作CF⊥AB于F,則四邊形AFCD為矩形.
∴CF=4,AF=2,
此時(shí),Rt△AQM∽R(shí)t△ACF,(2分)
,

∴QM=1;(3分)

(2)∵∠DCA為銳角,故有兩種情況:
①當(dāng)∠CPQ=90°時(shí),點(diǎn)P與點(diǎn)E重合,
此時(shí)DE+CP=CD,即t+t=2,∴t=1,在0<t<2內(nèi),(5分)
②當(dāng)∠PQC=90°時(shí),如備用圖1,
此時(shí)Rt△PEQ∽R(shí)t△QMA,∴
由(1)知,EQ=EM-QM=4-2t,
而PE=PC-CE=PC-(DC-DE)=t-(2-t)=2t-2,
,
,在0<t<2內(nèi);
綜上所述,t=1或;(8分)(說(shuō)明:未綜述,不扣分)

(3)為定值.
當(dāng)t>2時(shí),如備用圖2,PA=DA-DP=4-(t-2)=6-t,
由(1)得,BF=AB-AF=4,
∴CF=BF,
∴∠CBF=45°,
∴QM=MB=6-t,
∴QM=PA,
∵AB∥DC,∠DAB=90°,
∴四邊形AMQP為矩形,
∴PQ∥AB,
∴△CRQ∽△CAB,

點(diǎn)評(píng):本題利用了矩形的性質(zhì)、相似三角形的判定和性質(zhì),還要掌握多種情況下的討論解題法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2010•咸寧)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點(diǎn)G.
(1)直線FC與⊙O有何位置關(guān)系?并說(shuō)明理由;
(2)若OB=BG=2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

(2010•咸寧)如圖,直線l1:y=x+1與直線l2:y=mx+n相交于點(diǎn)P(a,2),則關(guān)于x的不等式x+1≥mx+n的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•咸寧)如圖,在⊙O中,直徑AB垂直于弦CD,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線FC與直線AB相交于點(diǎn)G.
(1)直線FC與⊙O有何位置關(guān)系?并說(shuō)明理由;
(2)若OB=BG=2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2010•咸寧)如圖,一次函數(shù)y=ax+b的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù)的圖象相交于C,D兩點(diǎn),分別過(guò)C,D兩點(diǎn)作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個(gè)結(jié)論:
①△CEF與△DEF的面積相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.
其中正確的結(jié)論是    .(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年湖北省咸寧市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•咸寧)如圖,菱形ABCD由6個(gè)腰長(zhǎng)為2,且全等的等腰梯形鑲嵌而成,則線段AC的長(zhǎng)為( )

A.3
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案