【題目】如圖:矩形ABCD的頂點B、C在x軸的正半軸上,A、D在拋物線上,矩形的頂點均為動點,且矩形在拋物線與軸圍成的區(qū)域里。

(1)設A點的坐標為(, ),試求矩形周長關(guān)于變量的函數(shù)表達式;

(2)是否存在這樣的矩形,它的周長為9,試證明你的結(jié)論。

【答案】(1) (2)不存在,證明見解析.

【解析】試題分析:1)根據(jù)拋物線的解析式令y=0,可求出拋物線與x軸兩交點的坐標,因為A點的坐標為(xy),則B點坐標為(x0),即OB=x,由拋物線的對稱性可知EC=x,則BC=4-2x,再根據(jù)矩形的面積公式可求出矩形周長p關(guān)于變量x的函數(shù)表達式;

2)先假設符合條件的矩形存在,把9代入(1)所求的矩形周長公式,根據(jù)一元二次方程判別式的情況判斷出方程解的情況即可判斷P是否存在.

試題解析:(1)=0

得:x1=0,x2=4.

則拋物線與坐標軸兩交點的坐標為O(00)、E(40)

OB=x,由拋物線的對稱性可知EC=x,則BC=42x.

P=2(42x+y)=2(42x )

P=

(2)不存在。

若存在周長為9的矩形ABCD,=9

4x24x+3=0,=1648<0

方程①無實數(shù)根,即不存在這樣的矩形。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某科學技術(shù)協(xié)會為倡導青少年主動進行研究性學習,積極研究身邊的科學問題,組織了以“體驗、創(chuàng)新、成長”為主題的青少年科技創(chuàng)大賽,在層層選拔的基礎上,所有推薦參賽學生分別獲得了一、二、三等獎和紀念獎,工作人員根據(jù)獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給出的信息解答下列問題:

(1)這次大賽獲得三等獎的學生有多少人?

(2)請將條形統(tǒng)計圖補充完整;

(3)扇形統(tǒng)計圖中,表示三等獎扇形的圓心角是多少度?

(4)若給所有推薦參賽學生每人發(fā)一張相同的卡片,各自寫上自己的名字,然后把卡片放入一個不透明的袋子里,搖勻后任意摸出一張,求摸出寫有一等獎學生名字卡片的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值: 4 x 12 2x 32x 3 ,其中 x 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點E作EF∥BC,分別交BD、CD于G、F兩點.若M、N分別是DG、CE的中點,則MN的長為 ( )

A.3
B.
C.
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠A=70°,下列角中是∠A的補角的是(

A. 70°B. 110°C. 20°D. 180°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:3﹣(﹣1)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分8分)

閱讀材料:

如圖,在四邊形ABCD中,對角線AC⊥BD,垂足為P.

求證:S四邊形ABCD=

證明:AC⊥BD→

∴S四邊形ABCD=S△ACD+S△ACB=

=

解答問題:

(1)上述證明得到的性質(zhì)可敘述為_______________________________________.

(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對角線AC⊥BD且相交于點P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:2x2+4x+2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注.某單位計劃在室內(nèi)安裝空氣凈化裝置,需購進AB兩種設備.每臺B種設備價格比每臺A種設備價格多0.7萬元,花3萬元購買A種設備和花7.2萬元購買B種設備的數(shù)量相同.

(1)求A種、B種設備每臺各多少萬元?

(2)根據(jù)單位實際情況,需購進A、B兩種設備共20臺,總費用不高于15萬元,求A種設備至少要購買多少臺?

查看答案和解析>>

同步練習冊答案