【題目】如圖,已知兩條射線OMCN,動(dòng)線段AB的兩個(gè)端點(diǎn)AB分別在射線OM、CN上,且∠C=OAB=108°,F在線段CB上,OB平分∠AOF

1)請(qǐng)?jiān)趫D中找出與∠AOC相等的角,并說明理由;

2)判斷線段ABOC 的位置關(guān)系是什么?并說明理由;

3)若平行移動(dòng)AB,那么∠OBC與∠OFC的度數(shù)比是否隨著AB位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.

【答案】(1)與相等的角是;(2,證明詳見解析;(3的度數(shù)比不隨著位置的變化而變化,

【解析】

1)根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)可得,再根據(jù)鄰補(bǔ)角的定義求出即可得解;

2)根據(jù)兩直線的同旁內(nèi)角互補(bǔ),兩直線平行,即可證明;

3)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得,再根據(jù)角平分線的定義可得,從而得到比值不變.

1

相等的角是

2

理由是:

3的度數(shù)比不隨著位置的變化而變化

平分,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ACBC,∠ACB90°,點(diǎn)DBC上,BD6CD2,點(diǎn)PAB上的動(dòng)點(diǎn),則PC+PD的最小值是( 。

A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司購買了一批、型芯片,其中型芯片的單價(jià)比型芯片的單價(jià)少9元,已知該公司用3120元購買型芯片的條數(shù)與用4200元購買型芯片的條數(shù)相等.

(1)求該公司購買的、型芯片的單價(jià)各是多少元?

(2)若兩種芯片共購買了200條,且購買的總費(fèi)用為6280元,求購買了多少條型芯片?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當(dāng)點(diǎn)的延長(zhǎng)線上時(shí),線段取得最大值

問題解決:如圖,點(diǎn)為線段外一動(dòng)點(diǎn),且,若,,連接,當(dāng)取得最大值時(shí),的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的10×10網(wǎng)絡(luò)中(我們把組成網(wǎng)格的小正方形的頂點(diǎn)稱為格點(diǎn)),△ABC的三個(gè)頂點(diǎn)分別在網(wǎng)格的格點(diǎn)上

1)請(qǐng)你在所給的網(wǎng)格中建立平面直角坐標(biāo)系,使△ABC的頂點(diǎn)A的坐標(biāo)為(-3,5);

2)在(1)的坐標(biāo)系中,直接寫出△ABC其它兩個(gè)頂點(diǎn)的坐標(biāo);

3)在(1)的坐標(biāo)系中,畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E□ABCD的邊BC延長(zhǎng)線上一點(diǎn),AECD于點(diǎn)FFGADAB于點(diǎn)G

1)填空:圖中與CEF相似的三角形有__________;(寫出圖中與CEF相似的所有三角形

2)從(1)中選出一個(gè)三角形,并證明它與CEF相似

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面真角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為Aa,0),Bb,0),且a,b滿足|a+1|+0,點(diǎn)C的坐標(biāo)為(0,3).

1)求a,b的值及SABC;

2)若點(diǎn)Mx軸上,且SACMSABC,試求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個(gè)頂點(diǎn)都在RtABC的邊上,當(dāng)矩形DEFG的面積最大時(shí),其對(duì)角線的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、、、在同一直線上,下面有四個(gè)條件,請(qǐng)你從中選三個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論,寫出一個(gè)正確的命題,并加以證明.

;②;③;④

解:我寫的真命題是:

中,已知:___________________

求證:_______________(不能只填序號(hào))

證明如下:

查看答案和解析>>

同步練習(xí)冊(cè)答案