已知二次函數(shù)y=ax2+bx+c的最小值是5
3
4
,且a:b:c=2:3:4,則a=______,b=______,c=______.
依題意,得b=
3
2
a,c=2a,
二次函數(shù)化為y=ax2+
3
2
ax+2a,
根據(jù)頂點縱坐標(biāo)公式,得
4a×2a-(
3
2
a)2
4a
=5
3
4

解得a=4,
∴b=
3
2
a=6,c=2a=8,
故答案是:4;6;8.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為x=-1.
給出四個結(jié)論:①b2>4ac;②b=-2a;③a-b+c=0;④b>5a.其中正確結(jié)論是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是自動噴灌設(shè)備的水管,點A在地面,點B高出地面1.5米.在B處有一自動旋轉(zhuǎn)的噴水頭,在每一瞬間,噴出的水流呈拋物線狀,噴頭B與水流最高點C的連線與水平線成45°角,水流的最高點C與噴頭B高出2米,在如圖的坐標(biāo)系中,水流的落地點D到點A的距離是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論中
①a<0b>0c>0;②4a+2b+c=3;③-
b
2a
>2
;④b2-4ac>0;
⑤當(dāng)x<2時,y隨x的增大而增大.
正確的個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

方程-x2+5x-2=
2
x
的正根的個數(shù)為(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=5,BC=6,動點P從點A出發(fā)沿AB向點B移動,(點P與點A、B不重合),作PDBC交AC于點D,在DC上取點E,以DE、DP為鄰邊作平行四邊形PFED,使點F到PD的距離FH=
1
6
PD
,連接BF,設(shè)AP=x.
(1)△ABC的面積等于______;
(2)設(shè)△PBF的面積為y,求y與x的函數(shù)關(guān)系,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知平行四邊形ABCD的周長為8cm,∠B=30°,若邊長AB=x(cm).
(1)寫出?ABCD的面積y(cm2)與x的函數(shù)關(guān)系式,并求自變量x的取值范圍.
(2)當(dāng)x取什么值時,y的值最大?并求最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

菱形ABCD邊長為4,∠BAD=60°,點E是AD上一動點(不與A、D重合),點F是CD上一動點,AE+CF=4,則△BEF面積的最小值為(  )
A.2
3
B.3
3
C.4
3
D.6
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

求函數(shù)y=x2-4x-10+(
6
-
x2-x-6
)0
的最小值.

查看答案和解析>>

同步練習(xí)冊答案