通過前面的學(xué)習(xí),我們知道利用面積的不同表示方法可以寫出一個(gè)代數(shù)恒等式,比如圖1的圖形,我們可以把它看成長為(b+c),寬為a的長方形,則圖形的面積為
a(b+c)
a(b+c)
,我們也可以把它看成是兩個(gè)長方形組成的圖形,則此時(shí),它的面積可以表示為
ab+ac
ab+ac
,所以我們可以得到等式
a(b+c)=ab+ac
a(b+c)=ab+ac

(1)圖2的圖形蘊(yùn)涵著一個(gè)著名定理,請(qǐng)你運(yùn)用面積不同的表達(dá)方式推導(dǎo)出這個(gè)定理.
(2)在圖3中,試畫一個(gè)幾何圖形,使它的面積能夠表示:(a+b)2=a2+2ab+b2(把圖形作在方格中)
分析:根據(jù)矩形的面積公式寫出即可;
(1)利用大正方形的面積的從整體與局部兩種思路寫出即可得解;
(3)作一個(gè)邊長為(a+b)的正方形,然后把正方形分成四部分.
解答:解:a(b+c),ab+ac,a(b+c)=ab+ac;

(1)證明:正方形的面積:(a+b)2
正方形的面積也可以表示為:4×
1
2
ab+c2,
所以,4×
1
2
ab+c2=(a+b)2,
即c2=a2+b2

(2)如圖所示,正方形的面積可以表示為:(a+b)2,
也可以表示為a2+2ab+b2,
所以,(a+b)2=a2+2ab+b2
點(diǎn)評(píng):本題考查了勾股定理的證明,比較簡單,結(jié)合圖形,把圖形的面積從整體與局部兩個(gè)方面表示出面積即可得證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•青島)在前面的學(xué)習(xí)中,我們通過對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖1和圖2發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式.
這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.

【研究速算】
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖3,將這個(gè)47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)分析:原矩形面積可以有兩種不同的表達(dá)方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果.
歸納提煉:
兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果
十位數(shù)字加1的和與十位數(shù)字相乘,再乘以100,加上兩個(gè)個(gè)位數(shù)字的積,構(gòu)成運(yùn)算結(jié)果

【研究方程】
提出問題:怎樣圖解一元二次方程x2+2x-35=0(x>0)?
幾何建模:
(1)變形:x(x+2)=35.
(2)畫四個(gè)長為x+2,寬為x的矩形,構(gòu)造圖4
(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,(x+x+2)2或四個(gè)長x+2,寬x的矩形面積之和,加上中間邊長為2的小正方形面積.
即(x+x+2)2=4x(x+2)+22
∵x(x+2)=35
∴(x+x+2)2=4×35+22
∴(2x+2)2=144
∵x>0
∴x=5
歸納提煉:求關(guān)于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并注明相關(guān)線段的長)
【研究不等關(guān)系】
提出問題:怎樣運(yùn)用矩形面積表示(y+3)(y+2)與2y+5的大小關(guān)系(其中y>0)?
幾何建模:
(1)畫長y+3,寬y+2的矩形,按圖5方式分割
(2)變形:2y+5=(y+3)+(y+2)
(3)分析:圖5中大矩形的面積可以表示為(y+3)(y+2);陰影部分面積可以表示為(y+3)×1,畫點(diǎn)部分部分的面積可表示為y+2,由圖形的部分與整體的關(guān)系可知(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5
歸納提煉:
當(dāng)a>2,b>2時(shí),表示ab與a+b的大小關(guān)系.
根據(jù)題意,設(shè)a=2+m,b=2+n(m>0,n>0),要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖并注明相關(guān)線段的長)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(山東青島卷)數(shù)學(xué)(解析版) 題型:解答題

在前面的學(xué)習(xí)中,我們通過對(duì)同一面積的不同表達(dá)和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗(yàn)證了平方差公式和完全平方公式

這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個(gè)位數(shù)字之和是10的兩個(gè)兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個(gè)正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個(gè)47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達(dá)方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個(gè)位數(shù)字3與7的積,構(gòu)成運(yùn)算結(jié)果。

歸納提煉:

兩個(gè)十位數(shù)字相同,并且個(gè)位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個(gè)長為,寬為的矩形,構(gòu)造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達(dá)方式,或四個(gè)長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關(guān)于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)

【研究不等關(guān)系】

提出問題:怎么運(yùn)用矩形面積表示的大小關(guān)系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為

畫點(diǎn)部分的面積可表示為,由圖形的部分與整體的關(guān)系可知:,即

歸納提煉:

當(dāng),時(shí),表示的大小關(guān)系

根據(jù)題意,設(shè),,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標(biāo)注相關(guān)線段的長)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

通過前面的學(xué)習(xí),我們知道利用面積的不同表示方法可以寫出一個(gè)代數(shù)恒等式,比如圖1的圖形,我們可以把它看成長為(b+c),寬為a的長方形,則圖形的面積為______,我們也可以把它看成是兩個(gè)長方形組成的圖形,則此時(shí),它的面積可以表示為______,所以我們可以得到等式______
(1)圖2的圖形蘊(yùn)涵著一個(gè)著名定理,請(qǐng)你運(yùn)用面積不同的表達(dá)方式推導(dǎo)出這個(gè)定理.
(2)在圖3中,試畫一個(gè)幾何圖形,使它的面積能夠表示:(a+b)2=a2+2ab+b2(把圖形作在方格中)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

通過前面的學(xué)習(xí),我們知道利用面積的不同表示方法可以寫出一個(gè)代數(shù)恒等式,比如圖1的圖形,我們可以把它看成長為(b+c),寬為a的長方形,則圖形的面積為______,我們也可以把它看成是兩個(gè)長方形組成的圖形,則此時(shí),它的面積可以表示為______,所以我們可以得到等式______
精英家教網(wǎng)

(1)圖2的圖形蘊(yùn)涵著一個(gè)著名定理,請(qǐng)你運(yùn)用面積不同的表達(dá)方式推導(dǎo)出這個(gè)定理.
(2)在圖3中,試畫一個(gè)幾何圖形,使它的面積能夠表示:(a+b)2=a2+2ab+b2(把圖形作在方格中)

查看答案和解析>>

同步練習(xí)冊(cè)答案