【題目】如圖所示,矩形ABCD的邊AB=3,AD=2,將此矩形置入直角坐標(biāo)系中,使ABx 軸上,C 在直線y=x-2.

(1)求矩形各頂點坐標(biāo);

(2)若直線y=x-2y軸交于點E,拋物線過EAB三點,求拋物線的關(guān)系式;

(3)判斷上述拋物線的頂點是否落在矩形ABCD內(nèi)部,并說明理由.

【答案】1A(1,0),B(4,0),C(4,2),D(1,2).2y=.3)頂點 在矩形ABCD內(nèi)部.

【解析】本題主要考查了函數(shù)圖象上點的坐標(biāo)意義、矩形的性質(zhì)、二次函數(shù)解析式的確定

1)由于AD=2,即C點的縱坐標(biāo)為2,將其代入已知的直線解析式中,即可求得C點的橫坐標(biāo),進而由AB的長,求得A、D的橫坐標(biāo),由此可確定矩形的四頂點的坐標(biāo).

2)根據(jù)直線y=x-2可求得E點的坐標(biāo),進而可利用待定系數(shù)法求出該拋物線的解析式.

3)根據(jù)(2)所得拋物線的解析式,即可由配方法或公式法求得其頂點坐標(biāo),進而根據(jù)矩形的四頂點坐標(biāo),來判斷此頂點是否在矩形的內(nèi)部.

(1)如答圖所示.

∵y=x-2,AD=BC=2,設(shè)C點坐標(biāo)為(m,2),

C(m,2)代入y=x-2,

2=m-2.∴m=4.∴C(4,2),∴OB=4,AB=3.∴OA=4-3=1,

∴A(1,0),B(4,0),C(4,2),D(1,2).

(2)∵y=x-2,∴x=0,y=-2,∴E(0,-2).

設(shè)經(jīng)過E(0,-2),A(1,0),B(4,0) 三點的拋物線關(guān)系式為y=ax2+bx+c,

, 解得

y=.

(3)拋物線頂點在矩形ABCD內(nèi)部.

y=, 頂點為.

, 頂點在矩形ABCD內(nèi)部.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+ca≠0)的圖象中,觀察得出了下面五條信息:

ab0;a+b+c0b+2c0;a﹣2b+4c0

你認(rèn)為其中正確的信息是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2-(m+5)x+5.

(1)求證:它的圖象與x軸必有交點,且過x軸上一定點;

(2)這條拋物線與x軸交于兩點A(x1,0),B(x2,0),0<x1<x2,(1) 中定點的直線L;y=x+ky軸于點D,AB=4,圓心在直線L上的⊙MA、B兩點,求拋物線和直線的關(guān)系式,AB與弧圍成的弓形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(-3,4)所在的象限為( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年我國大學(xué)生畢業(yè)人數(shù)將達到7 490 000人,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為( )
A.7.49×107
B.7.49×106
C.74.9×105
D.0.749×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣2,3,﹣4,﹣5,6這五個數(shù)中,任取兩個數(shù)相乘所得的積最大的是(

A. 10B. 20C. 30D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥MN∥BC.MN分別交邊AB、DC于點M、N.如果AM:MB=2:3,AD=2,BC=7.求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( )
A.a6÷a2=a3
B.a3a2=a6
C.(3a32=6a6
D.a3﹣a3=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測量校園水平地面上一棵不可攀的樹的高度,學(xué)校數(shù)學(xué)興趣小組做了如下探索:根據(jù)光的反射定律,利用一面鏡子和一根皮尺,設(shè)計如下圖所示的測量方案:把一面很小的鏡子水平放置在離B(樹底)8.4米的點E處,然后沿著直線BE后退到點D,這時恰好在鏡子里看到樹梢頂點A,再用皮尺量得DE=3.2米,觀察者目高CD=1.6米,求樹AB的高度.

查看答案和解析>>

同步練習(xí)冊答案