如圖,任意四邊形ABCD各邊中點分別是E、F、GH,若對角線AC、BD的長都為20cm,則四邊形EFGH的周長是(  )

A80cm  B40cm  C20cm  D10c

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,任意四邊形ABCD中,AB=CD,M、N分別為BC、AD的中點.說明∠1與∠2的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,四邊形ABCD是正方形,G是CD邊上的一個動點(點G與C、D不重合),以CG為一邊在正方形ABCD外作正方形CEFG,連接BG,DE.我們探究下列圖中線段BG、線段DE的長度關系及所在直線的位置關系:
(1)①猜想如圖1中線段BG、線段DE的長度關系及所在直線的位置關系;
②將圖1中的正方形CEFG繞著點C按順時針(或逆時針)方向旋轉任意角度α,得到如圖2、如圖3情形.請你判斷①中得到的結論是否仍然成立,并選取圖2證明你的判斷.
(2)將原題中正方形改為矩形(如圖6),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)題①中得到的結論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•青海)如圖(*),四邊形ABCD是正方形,點E是邊BC的中點,∠AEF=90°,且EF交正方形外角平分線CF于點F.請你認真閱讀下面關于這個圖的探究片段,完成所提出的問題.
(1)探究1:小強看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個三角形全等,但△ABE和△ECF顯然不全等(一個是直角三角形,一個是鈍角三角形),考慮到點E是邊BC的中點,因此可以選取AB的中點M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強寫出了如下的證明過程:
證明:如圖1,取AB的中點M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點E,M分別為正方形的邊BC和AB的中點
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強繼續(xù)探索,如圖2,若把條件“點E是邊BC的中點”改為“點E是邊BC上的任意一點”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請你證明這一結論.
(3)探究3:小強進一步還想試試,如圖3,若把條件“點E是邊BC的中點”改為“點E是邊BC延長線上的一點”,其余條件仍不變,那么結論AE=EF是否成立呢?若成立請你完成證明過程給小強看,若不成立請你說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,任意四邊形ABCD中,AB=CD,M、N分別為BC、AD的中點.說明∠1與∠2的大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省徐州市豐縣中學九年級(上)前三章月考試卷(解析版) 題型:解答題

如圖,任意四邊形ABCD中,AB=CD,M、N分別為BC、AD的中點.說明∠1與∠2的大小關系.

查看答案和解析>>

同步練習冊答案