【題目】某市球類運(yùn)動(dòng)協(xié)會(huì)為了籌備一次大型體育活動(dòng),購(gòu)進(jìn)了一定數(shù)量的體育器材,器材管理員對(duì)購(gòu)買的部分器材進(jìn)行了統(tǒng)計(jì),圖表和圖是器材管理員通過(guò)采集數(shù)據(jù)后,繪制的兩幅不完整的頻率分布表與頻數(shù)分布直方圖.請(qǐng)你根據(jù)圖表中提供的信息,解答以下問(wèn)題:
頻率分布表 | ||
器材種類 | 頻數(shù) | 頻率 |
排 球 | 20 | |
乒乓球拍 | 50 | 0.50 |
籃 球 | 25 | 0.25 |
足 球 | ||
合 計(jì) | 1 |
(1)填充頻率分布表中的空格.
(2)在圖中,將表示“排球”和“足球”的部分補(bǔ)充完整.
(3)若該協(xié)會(huì)購(gòu)買這批體育器材時(shí),籃球和足球一共花去950元,且足球每個(gè)的價(jià)格比籃球多10元,現(xiàn)根據(jù)籌備實(shí)際需要,準(zhǔn)備再采購(gòu)籃球和足球這兩種球共10個(gè)(兩種球的個(gè)數(shù)都不能為0),計(jì)劃資金不超過(guò)320元,試問(wèn)該協(xié)會(huì)有哪幾種購(gòu)買方案?
【答案】
(1)解:50÷0.50=100個(gè);
則足球有100﹣20﹣50﹣25=5個(gè);
足球頻率 =0.05;
排球頻率 =0.2;
合計(jì)為100.
故答案為:0.2; 5,0.05; 100
(2)解:如圖:
(3)解:設(shè)籃球每個(gè)x元,足球每個(gè)(x+10)元,列方程得,
25x+5(x+10)=950,
解得x=30,
則籃球每個(gè)30元,足球每個(gè)40元.
設(shè)再買y個(gè)籃球,列不等式得,
30y+40(10﹣y)≤320,
解得y≥8,
由于籃球足球共10個(gè),
則籃球8個(gè),足球2個(gè);或籃球9個(gè),足球1個(gè)
【解析】(1)根據(jù)乒乓球的總數(shù)為50,頻數(shù)為0.50,求出體育器材總數(shù),然后減去乒乓球、排球、籃球數(shù)目,即可得到足球頻數(shù)、頻率及合計(jì)數(shù).(2)根據(jù)統(tǒng)計(jì)表中的數(shù)據(jù),將統(tǒng)計(jì)圖補(bǔ)充完整即可.(3)列方程求出籃球和足球的單價(jià),再根據(jù)單價(jià)列出不等式,推知購(gòu)買方案.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用一元一次不等式組的應(yīng)用和頻數(shù)分布直方圖,掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫出問(wèn)題答案;特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣2mx﹣3(m≠0)與x軸交于A(3,0),B兩點(diǎn).
(1)求拋物線的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)當(dāng)﹣2<x<3時(shí)的函數(shù)圖象記為G,求此時(shí)函數(shù)y的取值范圍;
(3)在(2)的條件下,將圖象G在x軸上方的部分沿x軸翻折,圖象G的其余部分保持不變,得到一個(gè)新圖象M.若經(jīng)過(guò)點(diǎn)C(4.2)的直線y=kx+b(k≠0)與圖象M在第三象限內(nèi)有兩個(gè)公共點(diǎn),結(jié)合圖象求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程中一定是一元二次方程的是( )
A.x2﹣6x=x2+9
B.(x﹣1)(x+2)=0
C.ax2﹣6x=0
D.(a﹣3)x2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求畫出圖形.
(1)(i)已知點(diǎn)A在格點(diǎn)(即小正方形的頂點(diǎn))上,畫一條線段AB,長(zhǎng)度為 ,且點(diǎn)B在格點(diǎn)上. (ii)以上題所畫的線段AB為一邊,另外兩條邊長(zhǎng)分別為 , .畫一個(gè)△ABC,使點(diǎn)C在格點(diǎn)上(只需畫出符合條件的一個(gè)三角形).
(2)所畫出的△ABC的邊AB上的高線長(zhǎng)為 . (直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
一般地,n個(gè)相同的因數(shù)a相乘 記為an , 記為an . 如2×2×2=23=8,此時(shí),3叫做以2為底8的對(duì)數(shù),記為log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),則n叫做以a為底b的對(duì)數(shù),記為logab(即logab=n).如34=81,則4叫做以3為底81的對(duì)數(shù),記為log381(即log381=4).
(1)計(jì)算以下各對(duì)數(shù)的值:
log24= , log216= , log264= .
(2)觀察(1)中三數(shù)4、16、64之間滿足怎樣的關(guān)系式,log24、log216、log264之間又滿足怎樣的關(guān)系式;
(3)由(2)的結(jié)果,你能歸納出一個(gè)一般性的結(jié)論嗎?
logaM+logaN=;(a>0且a≠1,M>0,N>0)
(4)根據(jù)冪的運(yùn)算法則:anam=an+m以及對(duì)數(shù)的含義證明上述結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com