【題目】閱讀理解:
若x滿足(x-2015)(2002-x)=-302,試求(x-2015)2+(2002-x)2的值.
解:設x-2015=a,2002-x=b,則ab=-302且a+b=(x-2015)+(2002-x)=-13.
∵(a+b)2=a2+2ab+b2,
∴a2+b2=(a+b)2-2ab=(-13)2-2×(-302)=773,即(x-2015)2+(2002-x)2的值為773.
解決問題:
請你根據上述材料的解題思路,完成下面一題的解答過程,若y滿足(y-2015)2+(y-2016)2=4035,試求(y-2015)(y-2016)的值.
科目:初中數學 來源: 題型:
【題目】已知O為直線AB上一點,∠COE為直角,OF平分∠AOE.
(1)如圖1,若∠COF=34°,則∠BOE=______;若∠COF=m°,則∠BOE=_______,∠BOE和∠COF的數量關系為_____________.
(2)當射線OE繞點O逆時針旋轉到如圖2的位置時,(1)中∠BOE和∠COF的數量關系是否還成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( 。
A. 過一點有且只有一條直線與已知直線平行
B. 不相交的兩條直線叫做平行線
C. 兩點確定一條直線
D. 兩點間的距離是指連接兩點間的線段
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com