【題目】觀察下列兩個等式:3+2=3×2﹣1,4+=4×﹣1,給出定義如下:
我們稱使等式a+b=ab﹣1成立的一對有理數(shù)a,b為“椒江有理數(shù)對”,記為(a,b),如:數(shù)對(3,2),(4,)都是“椒江有理數(shù)對”.
(1)數(shù)對(﹣2,1),(5,)中是“椒江有理數(shù)對”的是 ;
(2)若(a,3)是“椒江有理數(shù)對”,求a的值;
(3)若(m,n)是“椒江有理數(shù)對”,則(﹣n,﹣m) “椒江有理數(shù)對”(填“是”、“不是”或“不確定”).
(4)請再寫出一對符合條件的“椒江有理數(shù)對”
(注意:不能與題目中已有的“椒江有理數(shù)對”重復(fù))
【答案】(1)(﹣2,1)不是“椒江有理數(shù)對”, (5,)中是“椒江有理數(shù)對”(2)2(3)不是;(4)(6,1.4).
【解析】
(1)根據(jù)“椒江有理數(shù)對”的定義即可判斷;
(2)根據(jù)“椒江有理數(shù)對”的定義,構(gòu)建方程即可解決問題;
(3)根據(jù)“椒江有理數(shù)對”的定義即可判斷;
(4)根據(jù)“椒江有理數(shù)對”的定義即可解決問題.
(1)
∴
∴不是“椒江有理數(shù)對”,
∵
∴
∴是“椒江有理數(shù)對”;
(2)由題意得:
解得
(3)不是.
理由:
,
∵是“椒江有理數(shù)對”
∴
∴
∴不是“椒江有理數(shù)對”,
(4)等.
故答案為:;不是;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,多邊形OABCDE的頂點(diǎn)坐標(biāo)分別是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直線l經(jīng)過點(diǎn)M(2,3),且將多邊形OABCDE分割成面積相等的兩部分,則直線l的函數(shù)表達(dá)式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點(diǎn)E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對A點(diǎn)做如下移動:第1次向左移動3個單位長度至B點(diǎn),第2次從B點(diǎn)向右移動6個單位長度至C點(diǎn),第3次從C點(diǎn)向左移動9個單位長度至D點(diǎn),第4次從D點(diǎn)向右移動12個單位長度至E點(diǎn),…,依此類推.這樣第_____次移動到的點(diǎn)到原點(diǎn)的距離為2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“幸福是奮斗出來的”,在數(shù)軸上,若C到A的距離剛好是3,則C點(diǎn)叫做A的“幸福點(diǎn)”,若C到A、B的距離之和為6,則C叫做A、B的“幸福中心”
(1)如圖1,點(diǎn)A表示的數(shù)為﹣1,則A的幸福點(diǎn)C所表示的數(shù)應(yīng)該是 ;
(2)如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為4,點(diǎn)N所表示的數(shù)為﹣2,點(diǎn)C就是M、N的幸福中心,則C所表示的數(shù)可以是 (填一個即可);
(3)如圖3,A、B、P為數(shù)軸上三點(diǎn),點(diǎn)A所表示的數(shù)為﹣1,點(diǎn)B所表示的數(shù)為4,點(diǎn)P所表示的數(shù)為8,現(xiàn)有一只電子螞蟻從點(diǎn)P出發(fā),以2個單位每秒的速度向左運(yùn)動,當(dāng)經(jīng)過多少秒時,電子螞蟻是A和B的幸福中心?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G.若BG=4 ,則△CEF的面積是( )
A.
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于下列結(jié)論: ①二次函數(shù)y=6x2 , 當(dāng)x>0時,y隨x的增大而增大.
②關(guān)于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均為常數(shù),a≠0),則方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1.
③設(shè)二次函數(shù)y=x2+bx+c,當(dāng)x≤1時,總有y≥0,當(dāng)1≤x≤3時,總有y≤0,那么c的取值范圍是c≥3.
其中,正確結(jié)論的個數(shù)是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是任意四邊形,AC與BD交于點(diǎn)O.試說明:AC+BD> (AB+BC+CD+DA).
解:在△OAB中有OA+OB>AB,
在△OAD中有______________,
在△ODC中有______________,
在△________中有______________,
∴OA+OB+OA+OD+OD+OC+OB+OC>AB+AD+CD+BC,
即________________________.
∴AC+BD> (AB+BC+CD+DA).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com