勾股定理:如果直角三角形的兩條直角邊分別為a、b,斜邊為c,那么a、b、c一定滿足
 
.在運(yùn)用勾股定理進(jìn)行計(jì)算時(shí),除了會(huì)用a2+b2=c2外,還要掌握幾種變形形式,如:a=
 
,b=
 
分析:本題較為簡單,為書上的基本定理,直接填寫即可.
解答:解:由書上的基本定理可知:直角三角形各邊滿足a2+b2=c2,變形形式為:a=
c2-b2
,b=
c2-a2
點(diǎn)評(píng):本題考查勾股定理的基本內(nèi)容,掌握好基本內(nèi)容即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個(gè)三角形中,如果兩邊的平方和等于第三邊的平方,那么這個(gè)三角形為直角三角形.類似地,我們定義:對(duì)于任意的三角形,設(shè)其三個(gè)角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個(gè)三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請(qǐng)你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個(gè)內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內(nèi)接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直徑BE交AC于點(diǎn)D.
①求證:△ABC是勾股三角形;
②求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個(gè)結(jié)(12段),然后用樁釘釘成一個(gè)三角形,如圖1,其中∠C便是直角.

(1)請(qǐng)你選擇古埃及人得到直角三角形這種方法的理由
B
B
(填A(yù)或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形
(2)如果三個(gè)正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請(qǐng)你寫出一組勾股數(shù)
(6,8,10)
(6,8,10)

(3)仿照上面的方法,再結(jié)合上面你寫出的勾股數(shù),你能否只用繩子,設(shè)計(jì)一種不同于上面的方法得到一個(gè)直角三角形(在圖2中,只需畫出示意圖.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

相傳2500年前,古希臘著名數(shù)學(xué)家畢達(dá)哥拉斯從朋友家的地磚鋪成的地面上找到了直角三角形三邊的關(guān)系:“任意直角三角形,都有兩直角邊的平方和等于斜邊的平方.”這就是著名的“勾股定理”.它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系(如圖).
根據(jù)“勾股定理”,我們就可以由已知兩條直角邊的長來求斜邊的長.
如:a=1,b=1時(shí),12+12=c2,c=
12+12
=
2
;a=1,b=2時(shí),c=
12+22
=
5
;

請(qǐng)你根據(jù)上述材料,完成下列問題:
(1)a=1,b=3時(shí),c=
10
10
;
(2)如果斜邊長為
13
,則直角邊為正整數(shù)
2
2
,
3
3

(3)請(qǐng)你在數(shù)軸上畫出表示
13
的點(diǎn)(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個(gè)結(jié)(12段),然后用樁釘釘成一個(gè)三角形,如圖1,其中∠C便是直角.

(1)請(qǐng)你選擇古埃及人得到直角三角形這種方法的理由______(填A(yù)或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形
(2)如果三個(gè)正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請(qǐng)你寫出一組勾股數(shù)______
(3)仿照上面的方法,再結(jié)合上面你寫出的勾股數(shù),你能否只用繩子,設(shè)計(jì)一種不同于上面的方法得到一個(gè)直角三角形(在圖2中,只需畫出示意圖.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個(gè)結(jié)(12段),然后用樁釘釘成一個(gè)三角形,如圖1,其中∠C便是直角.

精英家教網(wǎng)

(1)請(qǐng)你選擇古埃及人得到直角三角形這種方法的理由______(填A(yù)或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形
(2)如果三個(gè)正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請(qǐng)你寫出一組勾股數(shù)______
(3)仿照上面的方法,再結(jié)合上面你寫出的勾股數(shù),你能否只用繩子,設(shè)計(jì)一種不同于上面的方法得到一個(gè)直角三角形(在圖2中,只需畫出示意圖.)

查看答案和解析>>

同步練習(xí)冊(cè)答案