【題目】如圖,直線l過(guò)正方形ABCD的頂點(diǎn)A,BE⊥l于點(diǎn)E,DF⊥l于點(diǎn)F,若BE=2,DF=4,則EF的長(zhǎng)為(
A.2
B.2
C.6
D.8

【答案】C
【解析】解:∵正方形ABCD,

∴AD=AB,∠DAB=90°,

∵BE⊥l于點(diǎn)E,DF⊥l于點(diǎn)F,

∴∠AFD=∠AEB=90°,

∴∠FAD+∠FDA=90°,且∠EAB+∠FAD=90°,

∴∠FDA=∠EAB,

在△ABE和△ADF中

∴△ABE≌△DAF(AAS),

即AE=DF=2,AF=BE=4,

∴EF=AE+AF=4+2=6,

故選C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解正方形的性質(zhì)(正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BA=AE=DC,AD=EC,CEAE,垂足為E.

(1)求證:DCA≌△EAC;

(2)只需添加一個(gè)條件,即 ,可使四邊形ABCD為矩形.請(qǐng)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)七、八年級(jí)各選派10名選手參加學(xué)校舉辦的知識(shí)競(jìng)賽,競(jìng)賽計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下所示.

隊(duì)別

平均分

眾數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

七年級(jí)

6.7

a

m

3.41

90%

20%

八年級(jí)

7.1

p

q

1.69

80%

10%


(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求出a的值;并直接寫(xiě)出表格中m,p,q的值;
(2)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí),所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由、

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5+3x3+7x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)ABC的面積為1.

如圖1,分別將AC,BC邊2等分,D1,E1是其分點(diǎn),連接AE1,BD1交于點(diǎn)F1,得到四邊形CD1F1E1,其面積S1=

如圖2,分別將AC,BC邊3等分,D1,D2,E1,E2是其分點(diǎn),連接AE2,BD2交于點(diǎn)F2,得到四邊形CD2F2E2,其面積S2=;

如圖3,分別將AC,BC邊4等分,D1,D2,D3,E1,E2,E3是其分點(diǎn),連接AE3,BD3交于點(diǎn)F3,得到四邊形CD3F3E3,其面積S3=;

按照這個(gè)規(guī)律進(jìn)行下去,若分別將AC,BC邊(n+1)等分,…,得到四邊形CDnEnFn,其面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值(x-2)2+2(x+2)(x-4)-(x-3)(x+3);其中x=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,經(jīng)過(guò)原點(diǎn)O的拋物線(a0)與x軸交于另一點(diǎn)A(,0),在第一象限內(nèi)與直線y=x交于點(diǎn)B(2,t).

(1)求這條拋物線的表達(dá)式;

(2)在第四象限內(nèi)的拋物線上有一點(diǎn)C,滿足以B,O,C為頂點(diǎn)的三角形的面積為2,求點(diǎn)C的坐標(biāo);

(3)如圖2,若點(diǎn)M在這條拋物線上,且MBO=ABO,在(2)的條件下,是否存在點(diǎn)P,使得POC∽△MOB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一個(gè)平面去截一個(gè)三棱柱,截面可能是______.(填一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法不正確的是(

A. 等腰三角形是軸對(duì)稱(chēng)圖形

B. 三角相等的三角形是等邊三角形

C. 如果兩個(gè)三角形成軸對(duì)稱(chēng),那么這兩個(gè)三角形一定全等

D. A,B兩點(diǎn)關(guān)于直線MN對(duì)稱(chēng),則AB垂直平分MN

查看答案和解析>>

同步練習(xí)冊(cè)答案