如圖,在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=4以Rt△ABC的三邊向外作正方形ADEB、ACGH、CBKF,可得一“勾股圖”.再作△PQR,使得∠R=90°,點(diǎn)H在邊QR上,點(diǎn)D、E在邊PR上,點(diǎn)G、F在邊PQ上,那么△PQR的周長(zhǎng)等于
27+13
3
27+13
3
分析:在直角△ABC中,根據(jù)三角函數(shù)即可求得AC,進(jìn)而由等邊三角形的性質(zhì)和正方形的性質(zhì)及三角函數(shù)就可求得QR的長(zhǎng),在直角△QRP中運(yùn)用三角函數(shù)即可得到RP、QP的長(zhǎng),就可求出△PQR的周長(zhǎng).
解答:解:延長(zhǎng)BA交QR于點(diǎn)M,連接AR,AP.
∵AC=GC,BC=FC,∠ACB=∠GCF,
∴△ABC≌△GFC,
∴∠CGF=∠BAC=30°,
∴∠HGQ=60°,
∵∠HAC=∠BAD=90°,
∴∠BAC+∠DAH=180°,
又∵AD∥QR,
∴∠RHA+∠DAH=180°,
∴∠RHA=∠BAC=30°,
∴∠QHG=60°,
∴∠Q=∠QHG=∠QGH=60°,
∴△QHG是等邊三角形.
AC=AB•cos30°=4×
3
2
=2
3

則QH=HA=HG=AC=2
3
,
在直角△HMA中,HM=AH•sin60°=2
3
×
3
2
=3,AM=HA•cos60°=
3
,
在直角△AMR中,MR=AD=AB=4.
∴QR=2
3
+3+4=7+2
3
,
∴QP=2QR=14+4
3

PR=QR•
3
=6+7
3
,
∴△PQR的周長(zhǎng)等于RP+QP+QR=27+13
3
,
故答案為:27+13
3
點(diǎn)評(píng):考查了勾股定理和含30度角的直角三角形,正確運(yùn)用三角函數(shù)以及勾股定理是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案