【題目】如圖,△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AO平分∠BAC,交CD于點(diǎn)O,E為AB上一點(diǎn),且AE=AC。
(1)求證:△AOC≌△A0E;
(2)求證:OE∥BC。
【答案】(1)證明見解析(2)證明見解析
【解析】試題分析:
(1)由AO平分∠BAC,可得∠CAO=∠EAO結(jié)合AO=AO,AE=AC即可由“SAS”證得:△AOC≌△AOE;
(2)由△AOC≌△AOE可得∠ACO=∠AEO,由∠ACB=90°,CD⊥AB于點(diǎn)D,易得∠ACO+∠DCB=90°,∠AEO+∠EOD=90°,從而可得∠DCB=∠DOE,即可得到:OE∥BC.
試題解析:
(1)∵AO平分∠BAC,
∴∠CAO=∠EAO.
在△ACO和△AEO中:
,
∴△AOC≌△AOE.
(2)∵△AOC≌△AOE,
∴∠ACO=∠AEO,
∵ CD⊥AB于點(diǎn)D,
∴∠ODE=∠ACB=90°,
∴∠ACO+∠DCB=90°,∠AEO+∠EOD=90°,
∴∠DCB=∠DOE,
∴OE∥BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1,并直接寫出C1點(diǎn)坐標(biāo);
(2)以原點(diǎn)O為位似中心,位似比為1:2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點(diǎn)坐標(biāo);
(3)如果點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(2)的變化后D的對(duì)應(yīng)點(diǎn)D2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】資料:小球沿直線撞擊水平格檔反彈時(shí)(不考慮垂直撞擊),撞擊路線與水平格檔所成的銳角等于反彈路線與水平格檔所成的銳角.以圖(1)為例,如果黑球 沿從 到 方向在 點(diǎn)處撞擊 邊后將沿從 到 方向反彈,根據(jù)反彈原則可知 ,即 .如圖(2)和(3), 是一個(gè)長(zhǎng)方形的彈子球臺(tái)面,有黑白兩球 和 ,小球沿直線撞擊各邊反彈時(shí)遵循資料中的反彈原則.(回答以下問題時(shí)將黑白兩球均看作幾何圖形中的點(diǎn),不考慮其半徑大小)
(1)探究(1):黑球 沿直線撞擊臺(tái)邊 哪一點(diǎn)時(shí),可以使黑球 經(jīng)臺(tái)邊 反彈一次后撞擊到白球 ?請(qǐng)?jiān)趫D(2)中畫出黑球 的路線圖,標(biāo)出撞擊點(diǎn),并簡(jiǎn)單證明所作路線是否符合反彈原則.
(2)探究(2):黑球 沿直線撞擊臺(tái)邊 哪一點(diǎn)時(shí),可以使黑球 先撞擊臺(tái)邊 反彈一次后,再撞擊臺(tái)邊 反彈一次撞擊到白球 ?請(qǐng)?jiān)趫D(3)中畫出黑球 的路線圖,標(biāo)出黑球撞擊 邊的撞擊點(diǎn),簡(jiǎn)單說明作法,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用燈光下自己的影子長(zhǎng)度來測(cè)量路燈的高度.如圖,CD和EF是兩等高的路燈,相距27m,身高1.5m的小明(AB)站在兩路燈之間(D、B、F共線),被兩路燈同時(shí)照射留在地面的影長(zhǎng)BQ=4m,BP=5m.
(1)小明距離路燈多遠(yuǎn)?
(2)求路燈高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形是“等對(duì)角四邊形”, , , .求, 的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
① 小紅畫了一個(gè)“等對(duì)角四邊形”(如圖2),其中, ,此時(shí)她發(fā)現(xiàn)成立.請(qǐng)你證明此結(jié)論.
② 由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形”中, , ,AB=AD=4,.求∠D和對(duì)角線的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正確的是( )
A.①②③ B.①③④ C.①②④ D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為的直徑, 為弦的中點(diǎn),連接并延長(zhǎng)交于點(diǎn),過點(diǎn)作∥,交的延長(zhǎng)線于點(diǎn),連接, .
(1)求證: 是⊙的切線;
(2)若時(shí),
①求圖中陰影部分的面積;
②以為原點(diǎn), 所在的直線為軸,直徑的垂直平分線為軸,建立如圖所示的平面直角坐標(biāo)系,試在線段上求一點(diǎn),使得直線把陰影部分的面積分成的兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次數(shù)學(xué)活動(dòng)課上,張明用17個(gè)邊長(zhǎng)為1的小正方形搭成了一個(gè)幾何體,然后他請(qǐng)王亮用其他同樣的小正方體在旁邊再搭一個(gè)幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個(gè)無縫隙的大長(zhǎng)方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個(gè)小立方體,王亮所搭幾何體的表面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com