(2009•北京)已知:如圖,在△ABC中,∠ACB=90°,CD⊥AB于點D,點E在AC上,CE=BC,過E點作AC的垂線,交CD的延長線于點F.
求證:AB=FC.

【答案】分析:由已知說明∠FCE=∠B,∠FEC=∠ACB,再結(jié)合EC=BC證明△FEC≌△ACB,利用全等三角形的性質(zhì)即可證明.
解答:證明:∵FE⊥AC于點E,∠ACB=90°,
∴∠FEC=∠ACB=90°.
∴∠F+∠ECF=90°.
又∵CD⊥AB于點D,
∴∠A+∠ECF=90°.
∴∠A=∠F.
在△ABC和△FCE中,,
∴△ABC≌△FCE(AAS),
∴AB=FC.
點評:此題考查簡單的線段相等,可以通過全等三角形來證明,要注意利用此題中的圖形條件,同角的余角相等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•北京)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省湖州市九年級(下)數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2009•北京)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省蘇州市昆山市九年級(下)數(shù)學調(diào)研測試卷(解析版) 題型:解答題

(2009•北京)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省廈門市湖里區(qū)九年級下適應(yīng)性考試數(shù)學模擬試卷(1)(解析版) 題型:解答題

(2009•北京)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年北京市中考數(shù)學試卷(解析版) 題型:解答題

(2009•北京)已知關(guān)于x的一元二次方程2x2+4x+k-1=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=2x2+4x+k-1的圖象向下平移8個單位,求平移后的圖象的解析式;
(3)在(2)的條件下,將平移后的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折,圖象的其余部分保持不變,得到一個新的圖象.請你結(jié)合這個新的圖象回答:當直線y=x+b(b<k)與此圖象有兩個公共點時,b的取值范圍.

查看答案和解析>>

同步練習冊答案