閱讀材料:
如圖,△ABC中,AB=AC,P為底邊BC上任意一點,點P到兩腰的距離分別為r1,r2,腰上的高為h,連接AP,則S△ARP+S△ACP=S△ABC,即:AB•r1+AC•r2=AC•h,∴r1+r2=h(定值).
(1)理解與應(yīng)用:
如圖,在邊長為3的正方形ABCD中,點E為對角線BD上的一點,且BE=BC,F(xiàn)為CE上一點,F(xiàn)M⊥BC于M,F(xiàn)N⊥BD于N,試?yán)蒙鲜鼋Y(jié)論求出FM+FN的長.
(2)類比與推理:
如果把“等腰三角形”改成“等邊三角形”,那么P的位置可以由“在底邊上任一點”放寬為“在三角形內(nèi)任一點”,即:
已知等邊△ABC內(nèi)任意一點P到各邊的距離分別為r1,r2,r3,等邊△ABC的高為h,試證明r1+r2+r3=h(定值).
(3)拓展與延伸:
若正n邊形A1A2…An,內(nèi)部任意一點P到各邊的距離為r1r2…rn,請問r1+r2+…+rn是否為定值?如果是,請合理猜測出這個定值.

【答案】分析:(1)已知BE=BC,采用面積分割法,S△BFE+S△BCF=S△BEC得出三角形高的數(shù)量關(guān)系.
(2)連接PA,PB,PC,仿照面積的割補法,得出S△PBC+S△PAC+S△PAB=S△ABC,而這幾個三角形的底相等,故可得出高的關(guān)系.
(3)問題轉(zhuǎn)化為正n邊形時,根據(jù)正n邊形計算面積的方法,從中心向各頂點連線,可得出n個全等的等腰三角形,用邊長為底,邊心距為高,可求正n邊形的面積,然后由P點向正n多邊形,又可把正n邊形分割成n過三角形,以邊長為底,以r1r2…rn為高表示面積,列出面積的等式,可求證r1+r2+…+rn為定值.
解答:解:(1)過E點作EH⊥BC,垂足為H,連接BF,
∵BE=BC=3,∠EBH=45°,
∴EH=
∵S△BFE+S△BCF=S△BEC,
BE×FN+BC×FM=BC×EH,
∵BE=BC,
∴FN+FM=EH=

(2)連接PA,PB,PC,
∵S△PBC+S△PAC+S△PAB=S△ABC,
BC•r1+AC•r2+AB•r3=BC•h,
∵BC=AC=AB,
∴r1+r2+r3=h.

(3)設(shè)n邊形的邊心距為r,則:r1+r2+…+rn=nr(定值).
點評:本題主要利用面積分割法,求線段之間的關(guān)系,充分體現(xiàn)了面積法解題的作用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

25、閱讀材料:
如圖(一),在已建立直角坐標(biāo)系的方格紙中,圖形①的頂點為A、B、C,要將它變換到圖④(變換過程中圖形的頂點必須在格點上,且不能超出方格紙的邊界).
例如:將圖形①作如下變換(如圖二).
第一步:平移,使點C(6,6)移至點(4,3),得圖②;
第二步:旋轉(zhuǎn),繞著點(4,3)旋轉(zhuǎn)180°,得圖③;
第三步:平移,使點(4,3)移至點O(0,0),得圖④.
則圖形①被變換到了圖④.

解決問題:
(1)在上述變化過程中A點的坐標(biāo)依次為:
(4,6)→(
2
3
)→(
6
,
3
)→(
2
0

(2)如圖(三),仿照例題格式,在直角坐標(biāo)系的方格紙中將△DEF經(jīng)過平移、旋轉(zhuǎn)、翻折等變換得到△OPQ.(寫出變換步驟,并畫出相應(yīng)的圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:精英家教網(wǎng)
如圖2,拋物線頂點坐標(biāo)為點C(-1,-4),交x軸于點A(-3,0),交y軸于點B.
(1)求拋物線和直線AB的解析式;
(2)點P是拋物線(在第三象限內(nèi))上的一個動點,連接PA,PB,當(dāng)P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•益陽)閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點P的坐標(biāo)為(xp,yp).由xp-x1=x2-xp,得xp=
x1+x2
2
,同理yp=
y1+y2
2
,所以AB的中點坐標(biāo)為(
x1+x2
2
y1+y2
2
)
.由勾股定理得AB2=
.
x2-x1
  
.
2
+
.
y2-y1
  
.
2
,所以A、B兩點間的距離公式為AB=
(x2-x1)2+(y2-y1)2

注:上述公式對A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點,P為AB的中點,過P作x軸的垂線交拋物線于點C.
(1)求A、B兩點的坐標(biāo)及C點的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點時得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀材料:如圖,AB=AC,BD=CD,則可證得AD平分∠BAC,據(jù)此我們引出了“角平分線”的尺規(guī)作法.

問題:如圖,AD=AE,AB=AC,也可證得AP平分∠BAC,據(jù)此我們能否引出了“角平分線”的第二種尺規(guī)作法呢?請在圖中嘗試著畫出∠α的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:

如圖1,AB、CD交于點O,我們把△AOD和△BOC叫做對頂三角形.
結(jié)論:若△AOD和△BOC是對頂三角形,則∠A+∠D=∠B+∠C.
結(jié)論應(yīng)用舉例:
如圖2:求五角星的五個內(nèi)角之和,即∠A+∠B+∠ACE+∠ADB+∠E的度數(shù).
解:連接CD,由對頂三角形的性質(zhì)得:∠B+∠E=∠1+∠2,
在△ACD中,∵∠A+∠ACD+∠ADC=180°,
即∠A+∠3+∠1+∠2+∠4=180°,
∴∠A+∠ACE+∠B+∠E+ADB=180°
即五角星的五個內(nèi)角之和為180°.
解決問題:
(1)如圖①,∠A+∠B+∠C+∠D+∠E+∠F=
360°
360°

(2)如圖②,∠A+∠B+∠C+∠D+∠E+∠F+∠G=
540°
540°

(3)如圖③,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=
720°
720°

(4)如圖④,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=
1080°
1080°
;
請你從圖③或圖④中任選一個,寫出你的計算過程.

查看答案和解析>>

同步練習(xí)冊答案