【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于點A(﹣1,0),對稱軸為直線x=1,與y軸的交點B在(0,2)和(0,3)之間(包括這兩點),下列結論:
①當x>3時,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b2>8a;
其中正確的結論是( )
A.①③④ B.①②③ C.①②④ D.①②③④
【答案】B
【解析】
試題分析:①由拋物線的對稱性可求得拋物線與x軸令一個交點的坐標為(3,0),當x>3時,y<0,故①正確;
②拋物線開口向下,故a<0,∵x=﹣=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正確;
③設拋物線的解析式為y=a(x+1)(x﹣3),則y=ax2﹣2ax﹣3a,令x=0得:y=﹣3a.
∵拋物線與y軸的交點B在(0,2)和(0,3)之間,∴2≤﹣3a≤3.
解得:﹣1≤a≤﹣,故③正確;
④.∵拋物線y軸的交點B在(0,2)和(0,3)之間,∴2≤c≤3,由4ac﹣b2>8a得:4ac﹣8a>b2,
∵a<0,∴c﹣2<,∴c﹣2<0,∴c<2,與2≤c≤3矛盾,故④錯誤.
故選:B.
科目:初中數學 來源: 題型:
【題目】如圖1,△ABC和△DBC都是邊長為2的等邊三角形.
(1)以圖1中的某個點為旋轉中心,旋轉△DBC,就能使△DBC與△ABC重合,則滿足題意的點為: (寫出符合條件的所有點);
(2)將△DBC沿BC方向平移得到△D1B1C1,如圖2、圖3,則四邊形ABD1C1是平行四邊形嗎?證明你的結論;
(3)在(2)的條件下,當BB1= 時,四邊形ABD1C1為矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B兩點,CD切⊙O于點E,交PA,PB于C、D,若⊙O的半徑為r,△PCD的周長等于3r,則tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】【探究證明】
(1)某班數學課題學習小組對矩形內兩條互相垂直的線段與矩形兩鄰邊的數量關系進行探究,提出下列問題,請你給出證明.
如圖①,在矩形ABCD中,EF⊥GH,EF分別交AB,CD于點E,F,GH分別交AD,BC于點G,H.求證: ;
【結論應用】
(2)如圖②,在滿足(1)的條件下,又AM⊥BN,點M,N分別在邊BC,CD上,若,則的值為 ;
【聯(lián)系拓展】
(3)如圖③,四邊形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,點M,N分別在邊BC,AB上,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中:①0是最小的整數;②有理數不是正數就是負數;③正整數、負整數、正分數、負分數統(tǒng)稱為有理數;④非負數就是正數;④不僅是有理數,而且是分數;⑤是無限不循環(huán)小數,所以不是有理數;⑥無限小數不都是有理數;⑦正數中沒有最小的數,負數中沒有最大的數.其中錯誤的說法的個數為( )
A. 7個B. 6個C. 5個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是2,對角線AC、BD相交于點O,點E、F分別在邊AD、AB上,且OE⊥OF,則四邊形AFOE的面積是( 。
A.4B.2C.1D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系內,O為原點,點A的坐標為(10,0),點B在第一象限內,BO=5,sin∠BOA=. 求:(1)點B的坐標;(2)cos∠BAO的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在第一象限內作射線OC,與x軸的夾角為60°,在射線OC上取一點A,過點A作AH⊥x 軸于點H,在拋物線y=x2(x>0)上取一點P,在y軸上取一點Q,使得以P、O、Q為頂點的三角形與△AOH全等,則符合條件的點A的坐標是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com