(2007•連云港)當(dāng)-2<x<2時(shí),下列函數(shù)中,函數(shù)值y隨自變量x增大而增大的是    .(只填寫(xiě)序號(hào))
①y=2x;②y=2-x;③;④y=x2+6x+8.
【答案】分析:根據(jù)每一個(gè)函數(shù)的性質(zhì)及-2<x<2,結(jié)合圖象判斷函數(shù)值y隨自變量x增大而增大的函數(shù).
解答:解:①y=2x,正比例函數(shù),∵2>0,函數(shù)值y隨自變量x增大而增大,正確;
②y=2-x,一次函數(shù),∵-1<0,函數(shù)值y隨自變量x增大而減小,錯(cuò)誤;
,反比例函數(shù),當(dāng)-2<x<2時(shí),增減性無(wú)法確定,錯(cuò)誤;
④y=x2+6x+8,二次函數(shù),對(duì)稱軸為x=-3,開(kāi)口向上,當(dāng)-2<x<2時(shí),函數(shù)值y隨自變量x增大而增大,正確.
故填①④.
點(diǎn)評(píng):主要考查了函數(shù)的單調(diào)性.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),a≠0),當(dāng)a>0時(shí),在對(duì)稱軸左側(cè)y隨x的增大而減小,在對(duì)稱軸右側(cè)y隨x的增大而增大;當(dāng)a<0時(shí),在對(duì)稱軸左側(cè)y隨x的增大而增大,在對(duì)稱軸右側(cè)y隨x的增大而減。壤瘮(shù)中當(dāng)k>0時(shí),y隨x的增大而增大,k<0時(shí),y隨x的怎大而減。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)過(guò)點(diǎn)P作對(duì)角線OB的垂線,垂足為點(diǎn)T.求PT的長(zhǎng)y與時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)O關(guān)于直線AP的對(duì)稱點(diǎn)O'恰好落在對(duì)角線OB上時(shí),求此時(shí)直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2007•連云港)如圖,在△ABC中,AB=AC=2,∠BAC=20°.動(dòng)點(diǎn)P、Q分別在直線BC上運(yùn)動(dòng),且始終保持∠PAQ=100°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬(wàn)件)、供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時(shí),即停止供應(yīng).當(dāng)y1=y2時(shí),該商品的價(jià)格稱為穩(wěn)定價(jià)格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價(jià)格與穩(wěn)定需求量;
(2)價(jià)格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時(shí),政府常通過(guò)對(duì)供應(yīng)方提供價(jià)格補(bǔ)貼來(lái)提高供貨價(jià)格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬(wàn)件,政府應(yīng)對(duì)每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(03)(解析版) 題型:解答題

(2007•連云港)如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,頂點(diǎn)A,C在坐標(biāo)軸上,OA=60cm,OC=80cm.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以5cm/s的速度沿x軸勻速向點(diǎn)C運(yùn)動(dòng),到達(dá)點(diǎn)C即停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為ts.
(1)過(guò)點(diǎn)P作對(duì)角線OB的垂線,垂足為點(diǎn)T.求PT的長(zhǎng)y與時(shí)間t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
(2)在點(diǎn)P運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)O關(guān)于直線AP的對(duì)稱點(diǎn)O'恰好落在對(duì)角線OB上時(shí),求此時(shí)直線AP的函數(shù)解析式;
(3)探索:以A,P,T三點(diǎn)為頂點(diǎn)的△APT的面積能否達(dá)到矩形OABC面積的?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年湖北省黃石市十六中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2007•連云港)某地區(qū)一種商品的需求量y1(萬(wàn)件)、供應(yīng)量y2(萬(wàn)件)與價(jià)格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時(shí),即停止供應(yīng).當(dāng)y1=y2時(shí),該商品的價(jià)格稱為穩(wěn)定價(jià)格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價(jià)格與穩(wěn)定需求量;
(2)價(jià)格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時(shí),政府常通過(guò)對(duì)供應(yīng)方提供價(jià)格補(bǔ)貼來(lái)提高供貨價(jià)格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬(wàn)件,政府應(yīng)對(duì)每件商品提供多少元補(bǔ)貼,才能使供應(yīng)量等于需求量?

查看答案和解析>>

同步練習(xí)冊(cè)答案