【題目】如圖,正方形AOBO2的頂點A的坐標為A(0,2),O1為正方形AOBO2的中心;以正方形AOBO2的對角線AB為邊,在AB的右側(cè)作正方形ABO3A1,O2為正方形ABO3A1的中心;再以正方形ABO3A1的對角線A1B為邊,在A1B的右側(cè)作正方形A1BB1O4,O3為正方形A1BB1O4的中心;再以正方形A1BB1O4的對角線A1B1為邊在A1B1的右側(cè)作正方形A1B1O5A2,O4為正方形A1B1O5A2的中心:;按照此規(guī)律繼續(xù)下去,則點O2018的坐標為_____

【答案】(21010﹣2,21009

【解析】

由題意O1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…觀察可知,下標為偶數(shù)的點的縱坐標為,下標為偶數(shù)的點在直線y=x+1上,點O2018的縱坐標為21009,可得21009=x+1,可得x=21010﹣2,可得點O2018的坐標為(21010﹣2,21009).

由題意O1(1,1),O2(2,2),O3(,4,2),O4(,6,4),O5(10,4),O6(14,8)…

觀察可知,下標為偶數(shù)的點的縱坐標為,

下標為偶數(shù)的點在直線y=x+1上,

∵點O2018的縱坐標為21009,

21009=x+1,

x=21010﹣2,

∴點O2018的坐標為(21010﹣2,21009),

故答案為:(21010﹣2,21009).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BA=BCD在邊CB上,且DB=DA=AC

1)如圖1,填空∠B= °,∠C= °;

2)若M為線段BC上的點,過M作直線MH⊥ADH,分別交直線AB、AC與點N、E,如圖2

求證:△ANE是等腰三角形;

試寫出線段BN、CE、CD之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代有著輝煌的數(shù)學成就,《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》等是我國古代數(shù)學的重要文獻.

1)小明想從這4部數(shù)學名著中隨機選擇1部閱讀,則他選中《九章算術(shù)》的概率為________;

2)某中學擬從這4部數(shù)學名著中選擇2部作為數(shù)學文化校本課程學習內(nèi)容,用樹狀圖或列表法求恰好選中《九章算術(shù)》和《孫子算經(jīng)》的概率.(設《周髀算經(jīng)》為,《九章算術(shù)》為,《海島算經(jīng)》為,《孫子算經(jīng)》為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,記,.

1)如圖,若平分、分別是的外角的平分線,,用含的代數(shù)式表示的度數(shù),用含的代數(shù)式表示的度數(shù),并說明理由.

2)如圖,若點 的三條內(nèi)角平分線的交點,于點 , 猜想(1)中的兩個結(jié)論是否發(fā)生變化,補全圖形并直接寫出你的結(jié)論.

.

.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AC=2,BD=2 3 ,AC,BD相交于點O.

(1)求邊AB的長;

(2)如圖2,將一個足夠大的直角三角板60°角的頂點放在菱形ABCD的頂點A處,繞點A左右旋轉(zhuǎn),其中三角板60°角的兩邊分別與邊BC,CD相交于點E,F(xiàn),連接EF與AC相交于點G.

判斷AEF是哪一種特殊三角形,并說明理由;

旋轉(zhuǎn)過程中,當點E為邊BC的四等分點時(BE>CE),求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是等邊△ABC的邊上的一個做勻速運動的動點,其由點A開始沿AB邊運動到B再沿BC邊運動到C為止,設運動時間為t,△ACP的面積為S,則St的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c和直線y=x+1交于A,B兩點,點Ax軸上,點B在直線x=3上,直線x=3x軸交于點C

(1)求拋物線的解析式;

(2)點P從點A出發(fā),以每秒個單位長度的速度沿線段AB向點B運動,點Q從點C出發(fā),以每秒2個單位長度的速度沿線段CA向點A運動,點P,Q同時出發(fā),當其中一點到達終點時,另一個點也隨之停止運動,設運動時間為t秒(t>0).以PQ為邊作矩形PQNM,使點N在直線x=3上.

①當t為何值時,矩形PQNM的面積最小?并求出最小面積;

②直接寫出當t為何值時,恰好有矩形PQNM的頂點落在拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ACB=45°,點E在對角線AC上,BE=BA,BFAC于點F,BF的延長線交AD于點G.點HBC的延長線上,且CH=AG,連接EH.

(1)若BC=12,AB=13,求AF的長;

(2)求證:EB=EH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,A=40°,B=70°,CE平分ACB,CDAB于D,DFCE,則CDF= 度.

查看答案和解析>>

同步練習冊答案