【題目】小玲為畢業(yè)聯(lián)歡會(huì)設(shè)計(jì)了一個(gè)配橙色的游戲,使用的是如圖所示兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤被分成面積相等的若干個(gè)扇形,不同扇形分別填涂顏色,分界線可忽略,游戲者同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,兩個(gè)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),若有一個(gè)轉(zhuǎn)盤的指針指向紅色,另一個(gè)轉(zhuǎn)盤的指針指向黃色,則配橙色游戲成功,游戲者獲勝.求游戲者獲勝的概率.(用列表法或畫樹狀圖說明)

【答案】游戲者獲勝的概率為.

【解析】

依據(jù)題意先用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,然后根據(jù)概率公式求出該事件的概率.

方法一:畫樹狀圖如下:

由樹狀圖可知,共有6種等可能結(jié)果,其中配橙色一紅一黃的有3種結(jié)果.

配橙色.

∴游戲者獲勝的概率為.

方法二:列表如下:

轉(zhuǎn)盤2

轉(zhuǎn)盤1

1

(紅1,紅)

(紅1,黃)

2

(紅2,紅)

(紅2,黃)

(黃,紅)

(黃,黃)

由樹狀圖可知,共有6種等可能結(jié)果,其中配橙色一紅一黃的有3種結(jié)果.

配橙色.

∴游戲者獲勝的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3……在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,則正方形A2017B2017 C2017 D2017的邊長(zhǎng)是( )

A. 2016 B. 2017 C. 2016 D. 2017

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是等邊三角形,點(diǎn)D、E分別在BCAC上,且CEBDBE、AD相交于點(diǎn)F.求證:

(1)ABD≌△BCE;

(2)AEF∽△ABE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一邊長(zhǎng)為2的正方形紙片ABCD,先將正方形ABCD對(duì)折,設(shè)折痕為EF(如圖①);再沿過點(diǎn)D的折痕將角A翻折,使得點(diǎn)A落在EF的H上(如圖②),折痕交AE于點(diǎn)G,則EG的長(zhǎng)度為( 。

A. 4﹣6 B. 2﹣3 C. 8﹣4 D. 4﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B為反比例函數(shù)y=圖象上的點(diǎn),AD⊥x軸于點(diǎn)D,直線AB分別交x軸,y軸于點(diǎn)E,C,CO=OE=ED.

(1)求直線AB的函數(shù)解析式;

(2)F為點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn),求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段 AB4M AB 的中點(diǎn),動(dòng)點(diǎn) P 到點(diǎn) M 的距離是 1,連接 PB,線段

PB 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長(zhǎng)度的最大值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC的直角邊BCx軸負(fù)半軸上,斜邊AC上的中線BD的反向延長(zhǎng)線交y軸負(fù)半軸于點(diǎn)E,反比例函數(shù)y=﹣x0)的圖象過點(diǎn)A,則BEC的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一直角三角形放置在如圖所示的平面直角坐標(biāo)系中,直角頂點(diǎn)C剛好落在反比例函數(shù)y=的圖象的一支上,兩直角邊分別交y、x軸于AB兩點(diǎn).當(dāng)CA=CB時(shí),四邊形CAOB的面積為( )

A. 4 B. 8 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點(diǎn)坐標(biāo)為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時(shí),y的最大值為2,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案