【題目】為了迎接祖國(guó)七十周年慶典,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)16趟可完成,需支付運(yùn)費(fèi)5400元.已知甲、乙兩車(chē)單獨(dú)運(yùn)完此垃圾,乙車(chē)所運(yùn)趟數(shù)是甲車(chē)的2倍,且乙車(chē)每趟運(yùn)費(fèi)比甲車(chē)少200元.

1)求甲、乙兩車(chē)單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟;

2)若單獨(dú)租用一臺(tái)車(chē),租用哪臺(tái)車(chē)合算?

【答案】1)甲車(chē)單獨(dú)運(yùn)完此堆垃圾需24趟,乙車(chē)需48趟;(2)租用乙車(chē)合算.

【解析】

1)設(shè)甲車(chē)單獨(dú)運(yùn)完此堆垃圾需運(yùn)x趟,可得乙車(chē)單獨(dú)運(yùn)完此堆垃圾需運(yùn)2x趟,根據(jù)甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)16趟可完成列方程求出x的值,進(jìn)而求出2x的值即可得答案;

2)設(shè)甲車(chē)一趟運(yùn)費(fèi)為a元,可得乙車(chē)一趟運(yùn)費(fèi)為(a-200)元,根據(jù)甲、乙兩車(chē)運(yùn)送,需支付運(yùn)費(fèi)5400元列方程可求出a的值,進(jìn)而可求出單獨(dú)租用每車(chē)的費(fèi)用,比較即可得答案.

(1)設(shè)甲車(chē)單獨(dú)運(yùn)完此堆垃圾需運(yùn)x趟,則乙車(chē)單獨(dú)運(yùn)完此堆垃圾需運(yùn)2x趟,

∵甲、乙兩車(chē)運(yùn)送,兩車(chē)各運(yùn)16趟可完成,

,

解得:,

經(jīng)檢驗(yàn),是原方程的解,且符合題意,

,

答:甲車(chē)單獨(dú)運(yùn)完此堆垃圾需24趟,乙車(chē)需48趟.

2)設(shè)甲車(chē)一趟運(yùn)費(fèi)為a元,則乙車(chē)一趟運(yùn)費(fèi)為(a-200)元,

∵甲、乙兩車(chē)運(yùn)送,需支付運(yùn)費(fèi)5400元,

16a+a-200=5400

解得:a=,

∴乙車(chē)一趟運(yùn)費(fèi)為:-200=元,

∴甲車(chē)總運(yùn)費(fèi)為:×24=6450元,乙車(chē)總運(yùn)費(fèi)為:×48=3300元,

6450元>3300元,

∴租用乙車(chē)合算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:點(diǎn)O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC

(1)如圖1,若點(diǎn)O在邊BC上,OEAB,OFAC,垂足分別為E,F.求證:AB=AC;

(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;

(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫(huà)出圖表示.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,且,垂足分別是,連結(jié)交于點(diǎn)

1)求證:是線段的垂直平分線;

2)若,求的周長(zhǎng)和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,邊ABAC的垂直平分線分別交BCD、E

1)若BC6,求ADE的周長(zhǎng).

2)若∠DAE60°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為鈍角三角形,將繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)得到,連接,若,則的度數(shù)為  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知A1,0),C0,2).

1)求拋物線的表達(dá)式;

2)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD是一塊邊長(zhǎng)為2米的正方形鐵板,在邊AB上選取一點(diǎn)M,分別以AMMB為邊截取兩塊相鄰的正方形板料. 當(dāng)AM的長(zhǎng)為何值時(shí),截取兩塊相鄰的正方形板料的總面積最小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一螞蟻從原點(diǎn)出發(fā),按向上、向右、向下的方向依次不斷移動(dòng),每次移動(dòng)1個(gè)單位,其行走路線如下圖,則A2019的坐標(biāo)是(

A.2019,0B.504,0C.1009,0D.1010,0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們已經(jīng)學(xué)習(xí)過(guò)多項(xiàng)式除以單項(xiàng)式,多項(xiàng)式除以多項(xiàng)式一般可用豎式計(jì)算,步驟如下:

①把被除式、除式按某個(gè)字母作降冪排列,并把所缺的項(xiàng)用零補(bǔ)齊;

②用被除式的第一項(xiàng)除以除式第一項(xiàng),得到商式的第一項(xiàng);

③用商式的第一項(xiàng)去乘除式,把積寫(xiě)在被除式下面(同類(lèi)項(xiàng)對(duì)齊),消去相等項(xiàng);

④把減得的差當(dāng)作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時(shí)為止,被除式=除式×商式+余式.若余式為零,說(shuō)明這個(gè)多項(xiàng)式能被另一個(gè)多項(xiàng)式整除.

例如:計(jì)算(6x47x3x21)÷(2x+1),可用豎式除法如圖:

所以6x47x3x21除以2x+1,商式為3x35x2+2x1,余式為0

根據(jù)閱讀材料,請(qǐng)回答下列問(wèn)題(直接填空):

1)(2x3+x3)÷(x1)=   ;

2)(4x24xy+y2+6x3y10)÷(2xy+5)=   ;

3)[(x2)(x3)+1]÷(x1)的余式為   ;

4x3+ax2+bx15能被x22x+3整除,則a   ,b   

查看答案和解析>>

同步練習(xí)冊(cè)答案