【題目】如圖,在△ABC中,∠A=105°,AE的垂直平分線(xiàn)MN交BE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( )
A.45° B.60° C.50° D.55°
【答案】C
【解析】
試題分析:利用線(xiàn)段垂直平分線(xiàn)的性質(zhì)知∠E=∠EAC AC=CE,等量代換得AB=CE=AC,利用三角形的外角性質(zhì)得∠B=∠ACB=2∠E,從而根據(jù)三角形的內(nèi)角和計(jì)算.
解:連接AC
∵CM⊥AE
∴∠E=∠EAC AC=CE(線(xiàn)段垂直平分線(xiàn)的性質(zhì))
∵AB+BC=BE(已知)
BC+CE=BE
∴AB=CE=AC(等量代換)
∴∠B=∠ACB=2∠E(外角性質(zhì))
∵∠B+∠E+105°=180°(三角形內(nèi)角和)
∴∠B+∠B+105°=180°
解得∠B=50°.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c滿(mǎn)足:①與2x2+ay3的和是單項(xiàng)式; ②,
(1)求a、b、c的值;
(2)求代數(shù)式(5b2﹣3c2)﹣3(b2﹣c2)﹣(﹣c2)+2016abc的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知OB是∠AOC的角平分線(xiàn),OD是∠COE的角平分線(xiàn),
(1)若∠BOE=110°,∠AOB=30°,求∠COE的度數(shù);
(2)若∠AOE=140°,∠AOC=60°,求∠DOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形兩邊的長(zhǎng)分別是4和10,則此三角形第三邊的長(zhǎng)可能是( )
A.5 B.6 C.11 D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.
(1)△ABC的面積為_(kāi)_____;
(2)將△ABC經(jīng)過(guò)平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′,補(bǔ)全△A′B′C′;
(3)若連接AA′,BB′,則這兩條線(xiàn)段之間的關(guān)系是______;
(4)在圖中畫(huà)出△ABC的高CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,5)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC
(1)用直尺和圓規(guī),作出BC邊上的中線(xiàn)AD(不寫(xiě)作法,保留作圖痕跡);
(2)若AD=BC,證明△ABC是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,點(diǎn)A(m,﹣2)、B(1,n﹣m)關(guān)于x軸對(duì)稱(chēng),則m、n的值為( )
A. m=1,n=1 B. m=﹣1,n=1 C. m=1,n=3 D. m=1,n=﹣3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com