【題目】如圖,二次函數(shù)y=ax2x+2(a0)的圖象與x軸交于A、B兩點,與y軸交于點C,已知點A(﹣4,0).

(1)求拋物線與直線AC的函數(shù)解析式;

(2)若點D(m,n)是拋物線在第二象限的部分上的一動點,四邊形OCDA的面積為S,求S關于m的函數(shù)關系;

(3)若點E為拋物線上任意一點,點F為x軸上任意一點,當以A、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出滿足條件的所有點E的坐標.

【答案】(1) (2)S=﹣m2﹣4m+4(﹣4m0)(3)(﹣3,2)、(,﹣2)、(,﹣2)

【解析】

試題分析:(1)把點A的坐標代入拋物線的解析式,就可求得拋物線的解析式,根據(jù)A,C兩點的坐標,可求得直線AC的函數(shù)解析式;

(2)先過點D作DHx軸于點H,運用割補法即可得到:四邊形OCDA的面積=ADH的面積+四邊形OCDH的面積,據(jù)此列式計算化簡就可求得S關于m的函數(shù)關系;

(3)由于AC確定,可分AC是平行四邊形的邊和對角線兩種情況討論,得到點E與點C的縱坐標之間的關系,然后代入拋物線的解析式,就可得到滿足條件的所有點E的坐標.

試題解析:(1)A(﹣4,0)在二次函數(shù)y=ax2x+2(a0)的圖象上,

0=16a+6+2,

解得a=﹣,

拋物線的函數(shù)解析式為y=﹣x2x+2;

點C的坐標為(0,2),

設直線AC的解析式為y=kx+b,則

,

解得

直線AC的函數(shù)解析式為:;

(2)點D(m,n)是拋物線在第二象限的部分上的一動點,

D(m,﹣m2m+2),

過點D作DHx軸于點H,則DH=﹣m2m+2,AH=m+4,HO=﹣m,

四邊形OCDA的面積=ADH的面積+四邊形OCDH的面積,

S=(m+4)×(﹣m2m+2)+(﹣m2m+2+2)×(﹣m),

化簡,得S=﹣m2﹣4m+4(﹣4m0);

(3)若AC為平行四邊形的一邊,則C、E到AF的距離相等,

|yE|=|yC|=2,

yE=±2.

當yE=2時,解方程﹣x2x+2=2得,

x1=0,x2=﹣3,

點E的坐標為(﹣3,2);

當yE=﹣2時,解方程﹣x2x+2=﹣2得,

x1=,x2=,

點E的坐標為(,﹣2)或(,﹣2);

若AC為平行四邊形的一條對角線,則CEAF,

yE=yC=2,

點E的坐標為(﹣3,2).

綜上所述,滿足條件的點E的坐標為(﹣3,2)、(,﹣2)、(,﹣2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】每年的農(nóng)歷三月初一為通州風箏節(jié).這天,同學正在江海明珠廣場上放風箏,如圖風箏從A處起飛,幾分鐘后便飛達C處,此時,在AQ延長線上B處的小宋同學發(fā)現(xiàn)自己的位置與風箏和廣場邊旗桿PQ的頂點P在同一直線上.

(1)已知旗桿高10米,若在B處測得旗桿頂P的仰角為30°,A處測得點P的仰角為45°,試求A、B之間的距離;

(2)此時,在A處背向旗桿又測得風箏的仰角為75°,若繩子在空中視為一條線段,求繩子AC為多少米?(結果可保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,OD弦BC于點F,交O于點E,連結CE、AE、CD,若AEC=ODC.

(1)求證:直線CD為O的切線;

(2)若AB=5,BC=4,求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB∥CD,點E為射線FG上一點.
(1)如圖1,直接寫出∠EAF、∠AED、∠EDG之間的數(shù)量關系;
(2)如圖2,當點E在FG延長線上時,求證:∠EAF=∠AED+∠EDG;
(3)如圖3,AI平分∠BAE,DI交AI于點I,交AE于點K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCDABEF,則CD_______EF,其理由是_______________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰補角的兩條平分線互相_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當五個整數(shù)從小到大排列后,其中位數(shù)是4,如果這組數(shù)據(jù)的唯一眾數(shù)是6,那么這組數(shù)據(jù)可能的最大的和是_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列計算正確的是( 。.
A.22=4
B.20=0
C.21=﹣2
D. =±2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程(x﹣2=xx﹣2)的解是( )

A.x=1B.x=0C.x1=2x2=0D.x1=2,x2=1

查看答案和解析>>

同步練習冊答案